Skip to main content
Log in

Stochastic thermodynamics of finite-tape information ratchet

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, we explore into the stochastic thermodynamics of a finite-tape information ratchet system. By determining the entropy production of the tape-ratchet system, we derive the information processing second law obeyed by the system. We found that the entropy production takes the form of the non-adiabatic component in both the transient and stationary regime, with the adiabatic component vanishes. The out-of-equilibrium stochastic behaviour is thus driven by non-adiabatic entropy production, with the occurrence of spontaneous relaxation from nonequilibrium initial state and the switching operation of the finite-tape information ratchet system. The observed nonequilibrium processes include (1) work extraction by assimilating excess heat from the heat reservoir when the information ratchet functions as an engine, or (2) dissipating work as excess heat into the heat reservoir when the information ratchet acts as a Landauer eraser. In particular, we observe the phenomenon of irreversible work conversion into excess heat as the information ratchet operates in the nonequilibrium stationary state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Leff, A. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing, 1st edn. (CRC Press, Boca Raton, FL, 2002)

  2. K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)

    Article  ADS  Google Scholar 

  3. R. Landauer, IBM, J. Res. Dev. 5, 183 (1961)

  4. J.M. Horowitz, J.M.R. Parrondo, New J. Phys. 13, 123019 (2011)

    Article  ADS  Google Scholar 

  5. T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010)

    Article  ADS  Google Scholar 

  6. F.J. Cao, M. Feito, Phys. Rev. E 79, 041118 (2009)

    Article  ADS  Google Scholar 

  7. D. Mandal, C. Jarzynski, Proc. Natl. Acad. Sci. USA 109, 11641 (2012)

    Article  ADS  Google Scholar 

  8. A.B. Boyd, D. Mandal, J.P. Crutchfield, New J. Phys. 18, 023049 (2016)

    Article  ADS  Google Scholar 

  9. S. Deffner, C. Jarzynski, Phys. Rev. X 3, 041003 (2013)

    Google Scholar 

  10. A.C. Barato, U. Seifert, Phys. Rev. E 90, 042150 (2014)

    Article  ADS  Google Scholar 

  11. A.C. Barato, U. Seifert, Phys. Rev. Lett. 112, 090601 (2014)

    Article  ADS  Google Scholar 

  12. L. He, A. Pradana, J.W. Cheong, L.Y. Chew, Phys. Rev. E 105, 054131 (2022)

    Article  ADS  Google Scholar 

  13. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2014)

    Google Scholar 

  14. M.D. Vidrighin, O. Dahlsten, M. Barbieri, M.S. Kim, V. Vedral, I.A. Walmsley, Phys. Rev. Lett 116, 050401 (2016)

    Article  ADS  Google Scholar 

  15. L. He, J.W. Cheong, A. Pradana, L.Y. Chew, Phys. Rev. E 107, 024130 (2023)

    Article  ADS  Google Scholar 

  16. C.V. den Broeck, Stochastic Thermodynamics: A Brief Introduction (IOS Press, Amsterdam, 2013), pp.155–193

    Google Scholar 

  17. M. Esposito, U. Harbola, S. Mukamel, Phys. Rev. E 76, 031132 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Esposito, C.V. den Broeck, Phys. Rev. E 82, 011143 (2010)

    Article  ADS  Google Scholar 

  19. G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Phys. Rev. X 8, 031037 (2018)

    Google Scholar 

  20. H. Ge, Phys. Rev. E 80, 021137 (2009)

    Article  ADS  Google Scholar 

  21. K. Yoshimura, A. Kolchinsky, A. Dechant, S. Ito, Phys. Rev. Res. 5, 013017 (2023)

    Article  Google Scholar 

  22. T. Hatano, S. Sasa, Phys. Rev. Lett 86, 3463 (2001)

    Article  ADS  Google Scholar 

  23. M. Esposito, C.V. den Broeck, Europhys. Lett. 95, 40004 (2011)

    Article  ADS  Google Scholar 

  24. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015)

    Article  Google Scholar 

  25. A. Kolchinsky, D.H. Wolpert, Phys. Rev. X 11, 041024 (2021)

    Google Scholar 

  26. H. Qian, Phys. Rev. E 63, 042103 (2001)

    Article  ADS  Google Scholar 

  27. A.B. Boyd, D. Mandal, J.P. Crutchfield, Phys. Rev. X 8, 031036 (2018)

    Google Scholar 

  28. A.B. Boyd, D. Mandal, J.P. Crutchfield, Phys. Rev. E 95, 012152 (2017)

    Article  ADS  Google Scholar 

  29. H. Ge, H. Qian, Phys. Rev. E 81, 051133 (2010)

    Article  ADS  Google Scholar 

  30. M.T. Semaan, J.P. Crutchfield, Phys. Rev. E 107, 054132 (2023)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LYC contributes to the conceptual design of the work. All authors contribute to the analysis and draft of the manuscript.

Corresponding author

Correspondence to Lock Yue Chew.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Appendix A mathematical proofs

Appendix A mathematical proofs

1.1 A.1 Positivity of the adiabatic and non-adiabatic entropy production

By using \(-\ln x \ge 1 - x\), we see that

$$\begin{aligned} \Delta _{a} S= & {} \sum _{i,j} M_{ji} p_i \ln \left( \frac{M_{ji} p_i^{\text {st}}}{M_{ij} p_j^{st}}\right) \nonumber \\= & {} -\sum _{i,j} M_{ji} p_i \ln \left( \frac{M_{ij} p_j^{st}}{M_{ji} p_i^{\text {st}}}\right) \nonumber \\\ge & {} \sum _{i,j} M_{ji} p_i \left( 1 - \frac{M_{ij} p_j^{st}}{M_{ji} p_i^{\text {st}}}\right) \nonumber \\= & {} \sum _{i,j} M_{ji} p_i - \sum _{i,j} p_i \frac{M_{ij} p_j^{st}}{p_i^{\text {st}}}\nonumber \\= & {} \sum _i p_i \sum _j M_{ji} - \sum _i \frac{p_i}{p_i^{\text {st}}}\sum _j M_{ij} p_j^{\text {st}} \nonumber \\= & {} \sum _i p_i - \sum _i \frac{p_i}{p_i^{\text {st}}} p_i^{\text {st}}\nonumber \\= & {} 1 - \sum _i p_i\nonumber \\= & {} 1 - 1 \nonumber \\= & {} 0, \end{aligned}$$

where we have used \(\sum _i p_i = 1\) and \(\sum _{j} M_{ji} =1\). Similarly, we observe that

$$\begin{aligned} \Delta _{\text {na}} S= & {} \sum _{i,j} M_{ji} p_i \ln \left( \frac{p_j^{\text {st}} p_i}{\tilde{p}_j p_i^{\text {st}}}\right) \nonumber \\= & {} -\sum _{i,j} M_{ji} p_i \ln \left( \frac{\tilde{p}_j p_i^{\text {st}}}{p_j^{\text {st}} p_i}\right) \nonumber \\\ge & {} \sum _{i,j} M_{ji} p_i \left( 1 - \frac{\tilde{p}_j p_i^{\text {st}}}{p_j^{\text {st}} p_i}\right) \nonumber \\= & {} \sum _{i,j} M_{ji} p_i - \sum _{i,j} M_{ji} \frac{\tilde{p}_j p_i^{\text {st}}}{p_j^{\text {st}}}\nonumber \\= & {} \sum _i p_i \sum _j M_{ji} - \sum _j \frac{\tilde{p}_j}{p_j^{\text {st}}}\sum _i M_{ji} p_i^{\text {st}} \nonumber \\= & {} \sum _i p_i - \sum _j \frac{\tilde{p}_j}{p_j^{\text {st}}} p_j^{\text {st}}\nonumber \\= & {} 1 - \sum _j \tilde{p}_j\nonumber \\= & {} 1 - 1 \nonumber \\= & {} 0. \end{aligned}$$

1.2 A.2 \(\Delta E = W = \Delta H + \Delta I\)

First, we note that

$$\begin{aligned} \Delta E = \sum _{ij} M_{ji} p_i (E_j - E_i) . \end{aligned}$$
(A1)

Because \(E_j - E_i = \ln \left( M_{ij}/M_{ji}\right)\) according to Eq. (8), we have

$$\begin{aligned} \Delta E = \sum _{ij} M_{ji} p_i \ln \left( \frac{M_{ij}}{M_{ji}}\right) = W , \end{aligned}$$
(A2)

based on Eq. (10). Also,

$$\begin{aligned} \Delta E= & {} \sum _{ij} M_{ji} p_i (E_j - E_i) \nonumber \\= & {} \sum _{ij} M_{ji} p_i E_j - \sum _{ij} M_{ji} p_i E_i \nonumber \\= & {} \sum _{ij} M_{ij} p_j E_i - \sum _{ij} M_{ji} p_i E_i \nonumber \\= & {} \sum _i \sum _j M_{ij} p_j E_i - \sum _i \sum _j M_{ji} p_i E_i \nonumber \\= & {} \sum _i \tilde{p}_i E_i - \sum _i p_i E_i \nonumber \\= & {} - \sum _i \tilde{p}_i \ln \left( \frac{e^{-E_i}}{Z_0}\right) + \sum _j p_j \ln \left( \frac{e^{-E_j}}{Z_0}\right) \nonumber \\= & {} - \sum _i \tilde{p}_i \ln p^{\text {eq}}_i + \sum _j p_j \ln p^{\text {eq}}_j , \end{aligned}$$
(A3)

where \(p^{\text {eq}}_i = e^{-E_i}/Z_0\) with \(Z_0= \sum _i e^{-E_i}\).

From Eq. (40), we have

$$\begin{aligned} \Delta I= & {} \sum _i \tilde{p}_i \ln \left( \frac{\tilde{p}_i}{p^{\text {eq}}_i}\right) - \sum _j p_j \ln \left( \frac{p_j}{p^{\text {eq}}_j}\right) \nonumber \\= & {} \sum _i \tilde{p}_i \ln \tilde{p}_i - \sum _i \tilde{p}_i \ln p^{\text {eq}}_i - \sum _j p_j \ln p_j + \sum _j p_j \ln p^{\text {eq}}_j \nonumber \\= & {} \sum _i \tilde{p}_i \ln \tilde{p}_i - \sum _j p_j \ln p_j - \sum _i \tilde{p}_i \ln p^{\text {eq}}_i + \sum _j p_j \ln p^{\text {eq}}_j \nonumber \\= & {} -\Delta H + \Delta E , \end{aligned}$$
(A4)

where we have used Eqs. (12) and (A3). Thus, we have

$$\begin{aligned} \Delta E = W = \Delta H + \Delta I . \end{aligned}$$
(A5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chew, L.Y., Pradana, A., He, L. et al. Stochastic thermodynamics of finite-tape information ratchet. Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-023-00994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00994-3

Navigation