Skip to main content
Log in

Continuous signaling pathways instability in an electromechanical coupled model for biomembranes and nerves

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Information processing is a basic part of life and, presumably, the nervous system’s primary purpose. Neurons perform a variety of tasks that collect useful information from the organism’s periphery sensor receptor arrays and transfer it into action, imagery, and memory. Brain communication, also known as neural signaling, is now assumed to be electromechanical, based on a large body of observational and experimental evidence acquired over the last two centuries. In this paper, modulational instability is investigated as a mechanism of wave trains and soliton formation in neurons using a nonlinearly coupled complex Ginzburg–Landau equation derived from the Morris–Lecar neural model for nerve electrical activity and the Heimburg–Jackson model for longitudinal density pulses. Using standard linear stability analysis, the growth rate of modulation instability is studied analytically and numerically as a function of perturbation frequency and system parameters. In particular, it is shown that the gain depends strongly on the coupling parameters. We also investigated the effect of coupling parameters on the gain of modulation instability, thus confirming the continuous signaling instability. This is highly significant from a theoretical point of view and could be a plus to explain the process of generation of action potential as the consequences of instability between coupled electrical and mechanical weakly continuous wave in nerve.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. P. Raven, G. Johnson, Biology (The McGraw Hill Companies, Dubuque, 2002)

    Google Scholar 

  2. J. Keener, J. Sneyd (eds.), Mathematical Physiology (Springer, New York, 2009)

    MATH  Google Scholar 

  3. J. Engelbrecht, K. Tamm, T. Peets, Modelling of Complex Signals in Nerves Springer (Springer, Cham, 2021)

    Book  MATH  Google Scholar 

  4. A.M. Dikande, G.A. Bartholomew, Phys. Rev. E 80, 1 (2009)

    Article  Google Scholar 

  5. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)

    Article  Google Scholar 

  6. F.M. Moukam Kakmeni, E.M. Inack, E.M. Yamakou, Phys. Rev. E 89, 052919 (2014)

    Article  ADS  Google Scholar 

  7. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  8. J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  9. G. Fongang Achu, F.M. Moukam Kakmeni, A.M. Dikande, Phys. Rev. E 97, 012211 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Heimburg, A. Blicher, L.D. Mosgaard, K. Zecchi, J. Phys. Conf. Ser. 558, 012018 (2014)

    Article  Google Scholar 

  11. T. Heimburg, Biochim. Biophys. Acta Biomembr. 1415, 147 (1998)

    Article  Google Scholar 

  12. T. Heimburg, Biophys. J. 103, 918 (2012)

    Article  ADS  Google Scholar 

  13. T. Heimburg, A.D. Jackson, Biophys. Rev. Lett. 02, 57 (2007)

    Article  Google Scholar 

  14. T. Heimburg, A.D. Jackson, Proc. Natl. Acad. Sci. 102, 9790 (2005)

    Article  ADS  Google Scholar 

  15. S.S.L. Andersen, A.D. Jackson, T. Heimburg, Prog. Neurobiol. 88, 104 (2009)

    Article  Google Scholar 

  16. H. Chen, D. Garcia-Gonzalez, A. Jèrusalem, Phys. Rev. E 99, 1 (2019)

    Google Scholar 

  17. J. Engelbrecht, T. Peets, K. Tamm, M. Laasmaa, M. Vendelin, Proc. Est. Acad. Sci. 67, 28 (2018)

    Article  MathSciNet  Google Scholar 

  18. J. Engelbrecht, T. Peets, K. Tamm, Biomech. Model. Mechanobiol. 17, 1771 (2018)

    Article  Google Scholar 

  19. J. Engelbrecht, K. Tamm, T. Peets, Med. Hypotheses 120, 90 (2018)

    Article  Google Scholar 

  20. J. Engelbrecht, K. Tamm, T. Peets, Biomech. Model. Mechanobiol. 14, 159 (2015)

    Article  Google Scholar 

  21. J. Engelbrecht, K. Tamm, T. Peets, Philos. Mag. 97, 967 (2017)

    Article  ADS  Google Scholar 

  22. G. Fongang Achu, S.E. Mkam Tchouobiap, F.M. Moukam Kakmeni, C. Tchawoua, Phys. Rev. E 98, 022216 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Perc, M. Marhl, Phys. Rev. E 71, 026229 (2005)

    Article  ADS  Google Scholar 

  24. M. Marhl, WSEAS Trans. Biol. Biomed. 1, 379 (2004)

    Google Scholar 

  25. C. Morris, H. Lecar, Biophys. J. 35, 193 (1981)

    Article  ADS  Google Scholar 

  26. A. Mondal, S.K. Sharma, R.K. Upadhyay, M.A. Aziz-Alaoui, P. Kundu, C. Hens, Phys. Rev. E 99, 042307 (2019)

    Article  ADS  Google Scholar 

  27. I. Tasaki, K. Iwasa, R.C. Gibbons, Jpn. J. Physiol. 30, 897 (1980)

    Article  Google Scholar 

  28. I. Tasaki, K. Kusano, P.M. Byrne, Biophys. J. 55, 1033 (1989)

    Article  ADS  Google Scholar 

  29. S. Terakawa, J. Physiol. 369, 229 (1985)

    Article  Google Scholar 

  30. I. Tasaki, P.M. Byrne, Biophys. J. 57, 633 (1990)

    Article  ADS  Google Scholar 

  31. C. Fillafer, M. Mussel, J. Muchowski, M.F. Schneider, Biophys. J. 114, 410 (2018)

    Article  ADS  Google Scholar 

  32. S.S.L. Andersen, A.D. Jackson, T. Heimburg, Rog. Neurobiol. 88, 10413 (2009)

    Google Scholar 

  33. F.M. Moukam Kakmeni, B. Njinabo Akoni, arXiv:2108.05264 [nlin.PS] (2021)

  34. C.S. Drapaca, Front. Cell. Neurosci. 9, 1 (2015)

    Google Scholar 

  35. A. El Hady, B.B. Machta, Nat. Commun. 6, 6697 (2015)

    Article  ADS  Google Scholar 

  36. M.M. Rvachev, Biophys. Rev. Lett. 05, 73 (2010)

    Article  Google Scholar 

  37. T. Peets, K. Tamm, Proc. Estonian Acad. Sci. 64, 331 (2015)

    Article  Google Scholar 

  38. J. Tian, G. Huang, M. Lin, J. Qiu, B. Sha, T.J. Lu, F. Xu, J. Mech. Behav. Biomed. Mater. 93, 213 (2019)

    Article  Google Scholar 

  39. L. Holland, H.W. de Regt, B. Drukarch, Front. Cell. Neurosci. 13, 1 (2019)

    Article  Google Scholar 

  40. J. Engelbrecht, K. Tamm, T. Peets, Proc. Estonian Acad. Sci. 69, 81 (2020)

    Article  Google Scholar 

  41. E.V. Vargas, A. Ludu, R. Hustert, P. Gumrich, A.D. Jackson, T. Heimburg, Biophys. Chem. 153, 159 (2011)

    Article  Google Scholar 

  42. A. Blicher, T. Heimburg, PLoS ONE 8, e65707 (2013)

    Article  ADS  Google Scholar 

  43. T. Heimburg, A. Blicher, L.D. Mosgaard, K. Zecchi, J. Phys.: Conf. Ser. 558, 012018 (2014)

    Google Scholar 

  44. B. Drukarch, H.A. Holland, M. Velichkov, J.J.G. Geurts, P. Voorn, G. Glas, H.W. de Regt, Prog. Neurobiol. 169, 172 (2018)

    Article  Google Scholar 

  45. T. Heimburg, Biophys. Chem. 150, 2 (2010)

    Article  Google Scholar 

  46. H. Ebel, P. Grabitz, T. Heimburg, J. Phys. Chem. B 105, 7353 (2001)

    Article  Google Scholar 

  47. T. Heimburg, A.D. Jackson, Biophys. J. 92, 3159 (2007)

    Article  ADS  Google Scholar 

  48. A. Blicher, K. Wodzinska, M. Fidorra, M. Winterhalter, T. Heimburg, Biophys. J. 96, 4581 (2009)

    Article  ADS  Google Scholar 

  49. F.M. Moukam Kakmeni, Ph.D. thesis, University of Yaounde I (2004)

  50. Y.C. Kouomou, P. Woafo, Phys. Scr. 62, 255 (2000)

    Article  ADS  Google Scholar 

  51. F.M. Moukam Kakmeni, S. Bowong, C. Tchawoua, E. Kaptouom, Phys. A 333, 87 (2004)

    Article  Google Scholar 

  52. V.K. Sharma, A. Goyal, J. Nonlinear Opt. Phys. Mater. 23, 1450034 (2014)

    Article  ADS  Google Scholar 

  53. C.D.B. Kamdem, C.B. Tabi, A. Mohamadou, Chaos Solit. Fract. 109, 170 (2018)

    Article  ADS  Google Scholar 

  54. A. Mvogo, A. Tambue, G.H. Ben-Bolie, T.C. Kofane, Phys. Lett. A 380, 2154 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  55. N.O. Nfor, P.G. Ghomsi, F.M. Moukam Kakmeni, Phys. Rev. E 97, 1 (2018)

    Article  Google Scholar 

  56. V.K. Sharma, Indian J. Phys. 90, 1271 (2016)

    Article  ADS  Google Scholar 

  57. J.M. Alcaraz-Pelegrina, P. Rodriguez-Garcia, Phys. Lett. A 374, 1591 (2010)

    Article  ADS  Google Scholar 

  58. F.B. Pelap, M.M. Faye, J. Phys. A: Math. Gen. 37, 1727 (2004)

    Article  ADS  Google Scholar 

  59. I.M. Uzunov, Z.D. Georgiev, T.N. Arabadzhiev, Phys. Rev. E 97, 052215 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  60. V.K. Sharma, K.K. De, A. Goyal, In Workshop on Recent Advances in Photonics (WRAP), (IEEE, New Delhi, 2014), p. 1. https://doi.org/10.1109/WRAP.2013.6917712 (2013)

  61. A. Amengual, D. Walgraef, M. San Miguel, E. Hernendez-Garcia, Phys. Rev. Lett. 76, 1956 (1996)

    Article  ADS  Google Scholar 

  62. K. Iwasa, I. Tasaki, Biochem. Biophys. Res. Commun. 95, 1328 (1980)

    Article  Google Scholar 

  63. K. Tamm, J. Engelbrecht, T. Peets, J. Non-Equilibrium Thermodyn. 44, 277 (2019)

    Article  ADS  Google Scholar 

  64. I. Cinelli, M. Destrade, M. Duffy, P. McHugh, Int. j. Numer. Method. Biomed. Eng. 34, e2942 (2018)

    Article  Google Scholar 

  65. M. Peyrard et T. Dauxois, Physique Des Solitons (CNRS EDITION, Paris, 2004)

  66. M. Remoissenet, Waves Called Solitons Concepts and Experiments (Springer, Berlin, 1999)

  67. D.R. Nicholson, M.V. Goldman, Phys. Fluids 19, 1621 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  68. A.A. Nair, A. Bisharathu Beevi, K. Subramanian, M.S. Mani Rajan, Optik (Stuttg). 204, 164114 (2020)

    Article  Google Scholar 

  69. T.S. Raju, C.N. Kumar, P.K. Panigrahi, J. Phys. A: Math. Gen. 38, L271 (2005)

    Article  Google Scholar 

  70. A. Govindarajan, B.A. Malomed, A. Mahalingam, A. Uthayakumar, Appl. Sci.7 (2017)

  71. V.K. Sharma, A. Goyal, J. Goswamy, J. Nonlinear Opt. Phys. Mater. 24, 1550034 (2015)

    Article  ADS  Google Scholar 

  72. V.K. Sharma, A. Goyal, T.S. Raju, C.N. Kumar, J. Mod. Opt. 60, 836 (2013)

    Article  ADS  Google Scholar 

  73. A.A. Nair, M.S. Mani Rajan, M. Jayaraju, V. Natarajan, Optik (Stuttg). 215, 164758 (2020)

    Article  ADS  Google Scholar 

  74. M. Kumar, K. Nithyanandan, H. Triki, K. Porsezian, Optik (Stuttg). 182, 1120 (2019)

    Article  ADS  Google Scholar 

  75. A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981)

    Article  ADS  Google Scholar 

  76. E. Villagran, A. Ludu, R. Hustert, P. Gumrich, A.D. Jackson, T. Heimburg, Biophys. Chem. 153, 159 (2011)

    Article  Google Scholar 

  77. E. Quak, T. Soomere, Applied Wave Mathematics (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewer for his/her constructive comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ASFK did formal analysis, investigation, and writing; GFA did the investigation and writing; FMMK did concept development, supervision, writing, review, and editing; PGG, FTN, and CT did the review and editing;

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Appendices

Appendix A

The following are expressions of parameters used in Eq. (12):

$$\begin{aligned} {\eta _0}= & {} {a_2}^2{b_7} - {a_2}{b_2}{a_6} + {a_2}{b_2}{\sigma _1},\nonumber \\ {\eta _1}= & {} - {a_2}{b_2}{a_1} + {a_2}^2{b_1} + 2{a_2}{a_4}{b_7} - {a_2}{b_4}{a_6} + \frac{{{a_2}{b_2}}}{{{v_0}}} + {a_2}{b_4}{\sigma _1} - {a_4}{b_2}{a_6} + {a_4}{b_2}{\sigma _1}, \nonumber \\ {\eta _2}= & {} - {a_2}{b_4}{a_1} - {a_4}{b_2}{a_1} + {a_2}^2{b_3} - {a_2}{b_2}{a_3} + 2{a_2}{a_4}{b_1} - {a_2}{b_6}{a_6}\nonumber \\&\quad + \frac{{{a_2}{b_4}}}{{{v_0}}} + {a_2}{b_6}{\sigma _1} + {a_4}^2{b_7} - {a_4}{b_4}{a_6} + \frac{{{a_4}{b_2}}}{{{v_0}}} + {a_4}{b_4}{\sigma _1}, \nonumber \\ {\eta _3}= & {} - {a_2}{b_6}{a_1} - {a_4}{b_4}{a_1} + {a_2}^2{b_5} - {a_2}{b_4}{a_3} + 2{a_2}{a_4}{b_3} - {a_2}{b_2}{a_5}\nonumber \\&\quad + \frac{{{a_2}{b_6}}}{{{v_0}}} - {a_4}{b_2}{a_3} + {a_4}^2{b_1} - {a_4}{b_6}{a_6} + \frac{{{a_4}{b_4}}}{{{v_0}}} + {a_4}{b_6}{\sigma _1}, \nonumber \\ {\kappa _0}= & {} - \frac{{{a_2}{b_2}}}{{\rho _0^A}},\,\,{\kappa _1} = - \frac{{{a_2}{b_2}}}{{\rho _0^A{v_0}}} - \frac{{{a_2}{b_4}}}{{\rho _0^A}} - \frac{{{a_4}{b_2}}}{{\rho _0^A}},\,\,{\kappa _2} = - \frac{{{a_2}{b_4}}}{{\rho _0^A{v_0}}} - \frac{{{a_2}{b_6}}}{{\rho _0^A}} - \frac{{{a_4}{b_2}}}{{\rho _0^A{v_0}}} - \frac{{{a_4}{b_4}}}{{\rho _0^A}}, \nonumber \\ {\beta _0}= & {} {a_2}{b_2}{C_{{m_0}}} + {a_1}{a_2} - \frac{{{a_2}}}{{\rho _0^A{v_0}}} - {a_4}{a_6} + {a_4}{\sigma _1},\,\,\,\nonumber \\ {\beta _1}= & {} {a_2}{b_4}{C_{{m_0}}} + {a_4}{b_2}{C_{{m_0}}} + 2{a_2}{a_3}, \nonumber \\ {\beta _2}= & {} {a_2}{b_6}{C_{{m_0}}} + {a_4}{b_4}{C_{{m_0}}} + 3{a_2}{a_5} + {a_4}{a_3},\,\,\,{\beta _4} = \frac{{{a_2}}}{{\rho _0^A{v_0}}} - \frac{{{a_4}}}{{\rho _0^A}} \nonumber \\ {\gamma _0}= & {} - {a_2}{b_2}D,\,\,\,{\gamma _1} = - D({a_2}{b_4} + {a_4}{b_2}),\,\,{\gamma _2} = - D({a_2}{b_6} + {a_4}{b_4}),\, \nonumber \\ {\delta _1}= & {} {C_{{m_0}}}{a_4},\,{\delta _2} = {C_{{m_0}}}{a_2},\,\,\,{\delta _3} = - D{a_4},\,\,{\delta _4} = D{a_2},\,\,{\delta _5} = \frac{{{a_2}}}{{\rho _0^A{v_0}}} + \frac{{{a_4}}}{{\rho _0^A}},\,\,{\delta _6} = \frac{{{a_4}}}{{\rho _0^A{v_0}}},\,\,{\delta _7} = \frac{{{a_2}}}{{\rho _0^A}} \nonumber \\ {a_1}= & {} \frac{{{g_{{c_a}}}{V_1}^3 {-} 3{V_1}^2{V_{{c_a}}}{g_{{c_a}}} {+} 3{V_1}{V_2}^2{g_{{c_a}}} {-} 6{g_L}{V_2}^3 {-} 3{g_{{c_a}}}{V_2}^3 {+} 3{V_2}^2{V_{{c_a}}}{g_{{c_a}}}}}{{6{V_2}^3}}, \nonumber \\ {a_2}= & {} {g_K}{V_K},\,\,{a_3} = \frac{{{g_{{c_a}}}\left( {{V_1}^2 + {V_1}{V_{{c_a}}} - 2{V_2}^2} \right) }}{{4{V_2}^3}},\,\,\nonumber \\ {a_4}= & {} - {g_K},\,\,{a_5} = - \frac{{{g_{{c_a}}}\left( {{V_{{c_a}}} + 3{V_1}} \right) }}{{6{V_2}^3}}, \nonumber \\ {a_6}= & {} \frac{{{g_{{c_a}}}{V_1}^3{V_{{c_a}}} - 3{g_{{c_a}}}{V_1}{V_{{c_a}}}{V_2}^2 + 6{g_L}{V_L}{V_2}^3 + 3{g_{{c_a}}}{V_{{c_a}}}{V_2}^3}}{{6{V_2}^3}}, \nonumber \\ {b_1}= & {} - \frac{{5{V_3}^4 + 15{V_3}^2{V_4}^2 + 6{V_3}{V_4}^3 - 24{V_4}^4}}{{144{V_4}^5}},\,\,\nonumber \\ {b_2}= & {} - \frac{{{V_3}^2}}{{24{V_4}^2}} - \frac{1}{3}, \nonumber \\ {b_3}= & {} \frac{{10{V_3}^3 + 15{V_3}{V_4}^2 + 3{V_4}^3}}{{144{V_4}^5}},\,\,{b_4} = \frac{{{V_3}}}{{12{V_4}^2}},\,\,\nonumber \\ {b_5}= & {} - \frac{1}{{144{V_4}^3}} - \frac{{5{V_3}^2}}{{72{V_4}^5}}, {b_6} = - \frac{1}{{24{V_4}^2}},\,\,\,\nonumber \\ {b_7}= & {} \frac{{{V_3}^5 + 5{V_3}^3{V_4}^2 + 3{V_3}^2{V_4}^3 - 24{V_3}{V_4}^4 + 24{V_4}^5}}{{144{V_4}^5}}. \end{aligned}$$
(46)

Appendix B

$$\begin{aligned} {P_1}= & {} \frac{{v_g^2{\delta _2} - {\gamma _0}}}{{{\delta _2}\omega }},\,\,\nonumber \\ {P_2}= & {} \frac{{{c_g}^2({k^2}{H_2} + 1) + 4k\omega {H_2}{c_g} - 6{k^2}{H_1} + {\omega ^2}{H_2} - {c_0}^2}}{{\left( {{k^2}{H_2} + 1} \right) \omega }},\,\,\nonumber \\ {Q_{{1_r}}}= & {} \frac{{ - {k^4}{\gamma _1}^2 + {k^2}\left( {9{\delta _3}{\omega ^2}{\beta _1} + 9{\delta _1}{\omega ^2}{\gamma _1} - 9{\gamma _2}{\eta _1} + 11{\eta _2}{\gamma _1}} \right) + 9{\eta _3}{\eta _1} - 12{\delta _1}^2{\omega ^4} - {\omega ^2}{\beta _1}^2 - 10{\eta _2}^2 + 21{\delta _1}{\omega ^2}{\eta _2}}}{{6{\eta _1}{\delta _2}\omega }}, \end{aligned}$$
$$\begin{aligned} {Q_{{1_i}}}= & {} - \frac{{{k^4}{\delta _3}{\gamma _1} + 4{\omega ^2}{k^2}{\delta _1}{\delta _3} - {k^2}{\delta _3}{\eta _2} - {\omega ^2}{\beta _1}{\delta _1} - {\beta _1}{\eta _2} + {\beta _2}{\eta _1}}}{{2{\eta _1}{\delta _2}}},\,\,\nonumber \\ {Q_1}= & {} {Q_{{1_r}}} + i{Q_{{1_i}}},\,\,{R_1} = \frac{{{k^2}{\delta _4} - {\beta _0}}}{{2{\delta _2}\omega }},\,\,{K_{{1_r}}} = \frac{1}{2}\frac{{{\kappa _0}}}{{{\delta _2}\omega }},\,\, \nonumber \\ {Q_2}= & {} \frac{{{\alpha ^2}\left( {{k^2}{H_2} + 1} \right) - 6\beta {k^2}\left( {{H_1} - {H_2}{c_0}^2} \right) }}{{12\left( {{H_1} - {H_2}{c_0}^2} \right) \left( {{k^2}{H_2} + 1} \right) \omega }},\,\,\nonumber \\ {R_2}= & {} \frac{{\vartheta {k^2}}}{{2({k^2}{H_2} + 1)}},\,\,\,{K_2} = \frac{{{\sigma _2}}}{{2\left( {{k^2}{H_2} + 1} \right) \omega }}{K_{{1_i}}}\nonumber \\= & {} - \frac{{{\delta _7}}}{{2{\delta _2}}},\,\,{K_1} = {K_{{1_i}}} + i{K_{{1_i}}}, \nonumber \\ {M_1}= & {} - \frac{{{\omega ^2}{\beta _4}^2 - {\omega ^2}{\beta _4}{\delta _5} + {\omega ^2}{\delta _5}^2 + {\kappa _1}^2}}{{3{\eta _1}{\delta _2}\omega }}, \nonumber \\ {N_{{1_r}}}= & {} \frac{{6{k^2}{\omega ^2}{\beta _4}{\delta _3} + 3{k^2}{\omega ^2}{\delta _3}{\delta _5} + 2{k^2}{\gamma _1}{\kappa _1} - 2{\omega ^2}{\beta _1}{\beta _4} + {\omega ^2}{\beta _1}{\delta _5} - 3{\omega ^2}{\delta _1}{\kappa _1} + 3{\eta _1}{\kappa _2} - 5{\eta _2}{\kappa _1}}}{{3{\eta _1}{\delta _2}\omega }}, \nonumber \\ {N_{{1_i}}}= & {} \frac{{4{k^2}{\beta _4}{\gamma _1} + 3{k^2}{\delta _3}{\kappa _1} - 2{k^2}{\delta _5}{\gamma _1} - 6{\omega ^2}{\beta _4}{\delta _1} + 3{\omega ^2}{\delta _1}{\delta _5} + {\beta _1}{\kappa _1} - 4{\beta _4}{\eta _2} + 5{\delta _5}{\eta _2} - 3{\delta _6}{\eta _1}}}{{3{\eta _1}{\delta _2}}}, \nonumber \\ {N_1}= & {} {N_{{1_r}}} + i{N_{{1_i}}},\,{\Gamma _r} = \frac{{6\left( {{\beta _4}{\delta _5} - {\delta _5}^2} \right) \left( {{H_2}{c_0}^2 - {H_1}} \right) {k^2}{\omega ^2} + \left( {6{H_2}{c_0}^2{\kappa _1}^2 + \alpha {H_2}{\eta _1}{\kappa _1} + 6{H_1}{\kappa _1}^2} \right) {k^2} - \alpha {\eta _1}{\kappa _1}}}{{12{\eta _1}\left( { - {H_2}{c_0}^2 + {H_1}} \right) {k^2}{\delta _2}\omega }}, \nonumber \\ {\Gamma _i}= & {} \frac{{6{H_2}\left( {{\beta _4} - 2{\delta _5}} \right) {\kappa _1}{k^2}{c_0}^2 - \left( {\left( {{\beta _4} - 2{\delta _5}} \right) \left( {\alpha {\eta _1}{H_2} + 6{H_1}{\kappa _1}} \right) } \right) {k^2} - \alpha {\eta _1}\left( {{\beta _4} - 2{\delta _5}} \right) }}{{12{\eta _1}\left( { - {H_2}{c_0}^2 + {H_1}} \right) {k^2}{\delta _2}}},\Gamma = {\Gamma _r} + {\Gamma _i},\,\, \nonumber \\ {\chi _r}= & {} \frac{{3\left( {{\delta _5} - {\beta _4}} \right) {\delta _3}{k^2}{\omega ^2} + \left( {{\beta _1}{\beta _4} - 2{\beta _1}{\delta _5} - 3{\delta _1}{\kappa _1}} \right) {\omega ^2} + 2{k^2}{\gamma _1}{\kappa _1} - 5{\eta _2}{\kappa _1}}}{{6{\eta _1}{\delta _2}\omega }}, \nonumber \\ {\chi _{\text {i}}}= & {} \frac{{ - \left( {{\beta _4}{\gamma _1} + 3{\delta _3}{\kappa _1}} \right) {k^2} + 3{\omega ^2}\left( {{\beta _4} - {\delta _5}} \right) {\delta _1} + 2{\beta _1}{\kappa _1} + 4{\beta _4}{\eta _2} - 5{\delta _5}{\eta _2} + 3{\delta _6}{\eta _1}}}{{6{\eta _1}{\delta _2}}},\,\,\chi = {\chi _r} + {\chi _i}. \end{aligned}$$
(47)

Appendix C

$$\begin{aligned} {\Sigma _1}= & {} \frac{{\left( {{K_2}\left( {{N_{{1_i}}} + 3{K_2}{\chi _{\text {i}}}} \right) {N_{{i_1}}}^2 + \left( {3{N_{{1_i}}} + {\chi _{\text {i}}}} \right) {\chi _{\text {i}}}^2{K_2} + 2{K_{{1_i}}}\left( {{N_{{1_i}}} + {\chi _{\text {i}}}} \right) {Q_{{1_i}}}{Q_{{1_r}}} - \left( {{K_{{1_i}}}\left( {{N_{{1_r}}} + {\chi _r}} \right) + {K_{{1_r}}}\left( {{\chi _i} + {N_{{1_i}}}} \right) } \right) Q_{{1_i}}^2} \right) {e^{2{R_1}T}}}}{{{Q_{{1_i}}}\left( {\left( {{\mathrm{T}_r} + {M_1} - {Q_2}} \right) {Q_{{1_i}}}^2 + \left( {N_{{1_i}}^2 + 2{N_{{1_i}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}^2} \right) {Q_{{1_r}}} - \left( {{N_{{1_i}}}{N_{{1_r}}} + {N_{{1_r}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}{\chi _r} + {N_{{1_i}}}{\chi _r}} \right) {Q_{{1_i}}}} \right) }}, \nonumber \\ {\Sigma _2}= & {} \frac{{{e^{4{R_1}T}}{K_{{1_i}}}\left( {3{K_2}{N_{{1_i}}}^2 + 6{K_2}{N_{{1_i}}}{\chi _{\text {i}}} + 3{K_2}{\chi _{\text {i}}}^2 + {K_{{1_i}}}{Q_{{1_i}}}{Q_{{1_r}}} - {K_{{1_r}}}{Q_{{1_i}}}^2} \right) }}{{{Q_{{1_i}}}\left( {\left( {{\mathrm{T}_r} + {M_1} - {Q_2}} \right) {Q_{{1_i}}}^2 + \left( {N_{{1_i}}^2 + 2{N_{{1_i}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}^2} \right) {Q_{{1_r}}} - \left( {{N_{{1_i}}}{N_{{1_r}}} + {N_{{1_r}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}{\chi _r} + {N_{{1_i}}}{\chi _r}} \right) {Q_{{1_i}}}} \right) }}, \nonumber \\ {\Sigma _3}= & {} \frac{{3{e^{6{R_1}T}}{K_2}{K_{{1_i}}}^2\left( {{N_{{1_i}}} + {\chi _{\text {i}}}} \right) }}{{{Q_{{1_i}}}\left( {\left( {{\mathrm{T}_r} + {M_1} - {Q_2}} \right) {Q_{{1_i}}}^2 + \left( {N_{{1_i}}^2 + 2{N_{{1_i}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}^2} \right) {Q_{{1_r}}} - \left( {{N_{{1_i}}}{N_{{1_r}}} + {N_{{1_r}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}{\chi _r} + {N_{{1_i}}}{\chi _r}} \right) {Q_{{1_i}}}} \right) }}, \nonumber \\ {\Sigma _4}= & {} \frac{{{e^{8{R_1}T}}{K_2}{K_{{1_i}}}^3}}{{{Q_{{1_i}}}\left( {\left( {{\mathrm{T}_r} + {M_1} - {Q_2}} \right) {Q_{{1_i}}}^2 + \left( {N_{{1_i}}^2 + 2{N_{{1_i}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}^2} \right) {Q_{{1_r}}} - \left( {{N_{{1_i}}}{N_{{1_r}}} + {N_{{1_r}}}{\chi _{\text {i}}} + {\chi _{\text {i}}}{\chi _r} + {N_{{1_i}}}{\chi _r}} \right) {Q_{{1_i}}}} \right) }}, \nonumber \\ {P_0}= & {} \sqrt{{{\left( {27\Sigma _1^2{\Sigma _4} - 9{\Sigma _1}{\Sigma _2}{\Sigma _3} + 2\Sigma _2^3 - 72{\Sigma _2}{\Sigma _4} + 27\Sigma _3^2} \right) }^2} - 4{{\left( { - 3{\Sigma _1}{\Sigma _3} + \Sigma _2^2 + 12{\Sigma _4}} \right) }^3}}, \nonumber \\ {p_1}= & {} 2^{-1/3}\root 3 \of {{{P_0} + 27\Sigma _1^2{\Sigma _4} - 9{\Sigma _1}{\Sigma _2}{\Sigma _3} + 2\Sigma _2^3 - 72{\Sigma _2}{\Sigma _4} + 27\Sigma _3^2}}, \nonumber \\ {p_2}= & {} \sqrt{\frac{{\Sigma _1^2}}{4} + \frac{{ - 3{\Sigma _1}{\Sigma _3} + \Sigma _2^2 + 12{\Sigma _4}}}{{3{p_1}}} - \frac{{2{\Sigma _2}}}{3} + \frac{{{P_1}}}{3}.} \end{aligned}$$
(48)

Appendix D

$$\begin{aligned} {\lambda _1}= & {} \chi {\Sigma _8}{\psi _{10}}{\psi _{20}} + \frac{1}{2}{\Omega ^2}{P_1} - \Gamma {\Sigma _6}\psi _{20}^2 - \frac{{{K_1}{\Sigma _7}{\psi _{20}}}}{{{\psi _{10}}}} + {Q_1}{\Sigma _5}\psi _{10}^2, \nonumber \\ {\lambda _2}= & {} \Gamma {\Sigma _6}\psi _{20}^2 + {N_1}{\Sigma _8}{\psi _{10}}{\psi _{20}} + {Q_1}{\Sigma _5}\psi _{10}^2, \nonumber \\ {\lambda _3}= & {} 2\Gamma {\Sigma _6}{\psi _{10}}{\psi _{20}} + {M_1}{\Sigma _6}{\psi _{10}}{\psi _{20}} + {N_1}{\Sigma _8}\psi _{10}^2 + {K_1}{\Sigma _7}, \nonumber \\ {\lambda _4}= & {} \chi {\Sigma _8}\psi _{10}^2 + {M_1}{\Sigma _6}{\psi _{10}}{\psi _{20}}, \nonumber \\ {\lambda _5}= & {} {\Sigma _9}{K_2}, \nonumber \\ {\lambda _7}= & {} {Q_2}{\Sigma _6}\psi _{20}^2 + \frac{1}{2}{\Omega ^2}{P_2} - \frac{{{\Sigma _9}{K_2}{\psi _{10}}}}{{{\psi _{20}}}}, \nonumber \\ {\lambda _8}= & {} {Q_2}{\Sigma _6}\psi _{20}^2. \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamga, A.S.F., Achu, G.F., Kakmeni, F.M.M. et al. Continuous signaling pathways instability in an electromechanical coupled model for biomembranes and nerves. Eur. Phys. J. B 95, 12 (2022). https://doi.org/10.1140/epjb/s10051-021-00264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00264-y

Navigation