Skip to main content
Log in

On a Model for Nerve Impulse Generation Mediated by Electromechanical Processes

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The generation of action potential involves specific mechanosensory stimuli that are manifest in the variation of membrane capacitance, related to the selective membrane permeability to ion exchanges, showing the central role of electromechanical processes in the buildup mechanism of the nerve impulse. It has been established by Gross et al. (Cellular and Molecular Neurobiology 3:89, 27) that in these electromechanical processes, the net instantaneous charge stored in the membrane capacitor is regulated by the rate of change of the net fluid density through the membrane, corresponding to the difference in densities of extracellular and intracellular fluids. In the present work, an electromechanical model for the nerve is considered, in which mechanical forces are assumed to be generated by fluid flow through the nerve membrane. These mechanical forces induce pressure waves that stimulate the membrane, and hence control the net charge stored in the membrane capacitor. The mathematical model features two coupled nonlinear partial differential equations, namely the familiar cable equation for the transmembrane voltage in which the membrane capacitor now acts like a capacitive diode, and the Heimburg-Jackson’s nonlinear hydrodynamic equation for the pressure wave assumed to control the instantaneous charge in the membrane capacitor. In the stationary regime, the variable-capacitance cable equation reduces to a linear eigenvalue problem with a null spectral parameter, the exact bound states of which are Legendre polynomials. In the dynamical regime, numerical simulations of the modified cable equation lead to a variety of wave profiles for the transmembrane voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data related to the study are included in the current manuscript.

References

  1. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  2. A.C. Scott, Rev. Mod. Phys. 47, 487 (1975)

    Article  ADS  Google Scholar 

  3. R. Fitzhugh, Biophys. J. 1, (1961)

  4. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)

    Article  Google Scholar 

  5. J. Engelbretcht, Proc. R. Soc. London 375, 195 (1981)

    ADS  Google Scholar 

  6. I. Tasaki, G. Matsumoto, Bull. Math. Biol. 64, 1069 (2002)

    Article  Google Scholar 

  7. T. Heimburg, A.D. Jackson, Proc. Nat. Acad. Sci. 102, 9790 (2005)

  8. A.M. Dikandé, B. Ga-Akeku, Phys. Rev. E 80, 041904 (2009)

  9. R.D. Keynes, D.J. Aidley, Nerve and Muscle, 3rd edn. (Cambridge University Press, Cambridge, Massachusetts, 1982)

    Google Scholar 

  10. R.R. Poznanski, L.A. Cacha, Y.M.S. Al-Wesabi, J. Ali, M. Bahadoran, P.P. Yupapin, J. Yunus, Sci. Rep. 7, 2746 (2017)

    Article  ADS  Google Scholar 

  11. R.R. Poznanski, L.A. Cacha, J. Integ. Neurosc. 11, 417 (2012)

    Article  Google Scholar 

  12. R.R. Poznanski, J. Integ. Neurosc. 3, 267 (2004)

    Article  Google Scholar 

  13. R.R. Poznanski, Modeling in the Neurosciences: From Ionic Channels to Neural Networks (Harwood Academic Publishers, Amsterdam, Netherlands, 1999)

    Google Scholar 

  14. R.R. Poznanski, K.A. Lindsay, J.R. Rosenberg, O. Sporns, Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics, 2nd edn. (Taylor and Francis, NW, USA, 2005)

    MATH  Google Scholar 

  15. G.F. Achu, F.M. Moukam-Kakmeni, A.M. Dikandé, Phys. Rev. E 97, 012211 (2018)

  16. J. Engelbrecht, T. Peets, K. Tamm, M. Laasmaa, M. Vendelin, Proc. Eston. Acad. Sc. 67, 28 (2018)

    Article  Google Scholar 

  17. K.S. Cole, H.J. Curtis, J. Gen. Physiol. 22, 649 (1939)

    Article  Google Scholar 

  18. E.N. Warman, W.M. Grill, D. Durand, IEEE Trans. Bio-Med. Electron. 39, 1244 (1992)

    Article  Google Scholar 

  19. W.R. Holmes, Cable Equation, in Encyclopedia of Computational Neuroscience, eds. by D. Jaeger, R. Jung (Springer, New York, 2014). https://doi.org/10.1007/978-1-4614-7320-6

  20. S.S.L. Andersen, A.D. Jackson, T. Heimburg, Prog. Neurobiol. 88, 104 (2009)

    Article  Google Scholar 

  21. W.M. Grill, IEEE Trans. Bio-Med. Electron. 46, 918 (1999)

    Article  Google Scholar 

  22. J.K. Mueller, W.J. Tyler, Phys. Biol. 11, 01 (2014)

    Article  ADS  Google Scholar 

  23. T. Heimburg, Biochim. Biophys. Acta-Biomembr. 1415, 147 (1998)

    Article  Google Scholar 

  24. I. Tasaki, K. Kusano, M. Byrne, Biophys. J. 55, 1033 (1989)

    Article  ADS  Google Scholar 

  25. I. Tasaki, P.M. Byrne, Biophys J. 57, 633 (1990)

    Article  ADS  Google Scholar 

  26. R. Blunck, Z. Batulan, Front. Pharmacol. 3, 166 (2012)

    Article  Google Scholar 

  27. D. Gross, W.S. Williams, J.A. Connor, Cell. Mol. Neurobiol. 3, 89 (1983)

    Article  Google Scholar 

  28. T. Heimburg, Thermal Biophysics of Membranes (Wiley-VCH Verlag Gmbh, 2007)

  29. A. El Hady, B.B. Machta, Nature Commun. 6, 6697 (2015)

    Article  ADS  Google Scholar 

  30. M. Mussel, M.F. Schneider, Sci. Rep. 9, 2467 (2019)

    Article  ADS  Google Scholar 

  31. I. Sasaki, Ferroelectrics 220, 305 (1998)

    Google Scholar 

  32. H. Chen, D. Garcia-Gonzalez and A. Jérusalem, Phys. Rev. E 99, 032406 (2019)

  33. J. Engelbrecht, T. Peets, K. Tamm, Biomech. Model. Mechanobio. 17, 1771 (2018)

    Article  Google Scholar 

  34. A.A. Nkongho, A.M. Dikandé, B.Z. Essimbi, SN Applied Sciences 2, 21 (2020)

    Article  Google Scholar 

  35. B.Z. Essimbi, A.M. Dikandé, T.C. Kofané, A.A. Zibi, J. Phys. Soc. Jpn. 64, 2777 (1995)

    Article  ADS  Google Scholar 

  36. A.G. Petrov, Biochim. Biophys. Acta 1561, 1 (2001)

    Google Scholar 

  37. T. Heimburg, A. Blicher, L.D. Mosgaard, K. Zecchi, J. Phys. Conf. Ser. 558, 012018 (2014)

  38. M. Plaksin, S. Shoham, E. Kimmel, Phys. Rev. X 4, 011004 (2014)

  39. A. Kamkin, I.K. (eds.), Mechanosensitivity of the Nervous System (Springer, Berlin, 2009)

  40. B. Lautrup, R. Appali, A.D. Jackson, T. Heimburg, Eur. Phys. J. E 34, 57 (2011)

    Article  Google Scholar 

  41. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, 10th edn. (National Bureau of Standards, 1972)

  42. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  43. R.H. Landau, M.J. Páez, C.C. Bordeianu, Computational Physics, 2nd revised and enlarged. (Wiley, Wienheim, 2007)

  44. See e.g. M. Renganathan, H. Wei, Y. Zhao, Cardiac action potential measurement in human embryonic stem cell cardiomyocytes, for cardiac safety studies using manual patch-clamp electrophysiology, in Stem Cell-Derived Models in Toxicology: Methods in Pharmacology and Toxicology, ed. by M. Clements, L. Roquemore (Humana Press, New York, NY, 2017)

  45. B.C. Carter, B.P. Bean, Neuron (Cell Press) 64, 898 (2009)

    Google Scholar 

  46. Y. Yao, C. Su, J. Xiong, Physica A 531, 121734 (2019)

  47. A.E. Casale, D.A. McCormick, J. Neurosc. 31, 18289 (2011)

    Article  Google Scholar 

  48. See e.g. J. Engelbrecht, K. Tamm, T. Peets, Biomech. Model. Mechanobio. 14, 159 (2014)

Download references

Acknowledgements

The author thanks the Max-Planck Institute for the Physics of Complex Systems (MPIPKS), Dresden, Germany, for permitting a visit during which part of this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain M. Dikandé.

Ethics declarations

Conflicts of Interest

There is no known conflict of interest for this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikandé, A.M. On a Model for Nerve Impulse Generation Mediated by Electromechanical Processes. Braz J Phys 52, 41 (2022). https://doi.org/10.1007/s13538-021-01045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01045-9

Keywords

Navigation