Skip to main content

Advertisement

Log in

Melting curve of iron up to 3600 kbar by statistical moment method

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The inner core of the earth is solid, the outer liquid is composed mainly of iron, and the pressure at the inner core boundary (ICB) is 3300 kbar (330 GPa). The melting point of iron at ICB limits the thermal structure and solidification of the earth’s core. Current estimates of the melting temperature of iron in the earth’s inner core boundary conditions vary considerably. Here, we have used the Lindemann criterion for melting and the statistical moment method, obtained the melting curve of iron up to 3600 kbar, which is in good agreement with most recently published experimental and theoretical curves. We calculated the melting temperatures of iron at the mantle boundary (1350 kbar) and inner core boundary (3300 kbar) to be 4017 and 6191 K, respectively. In particular, the equation of the melting curve of iron that we calculated has a simple form, which is easy to calculate and verify. This equation can be used to predict the melting temperature of iron up to 3600 kbar with reliable accuracy but very simply. It can also be used to predict the pressure when the melting point of iron is known.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: In this paper, our theoretical calculation data has been presented in Table 1 and shown in Figure 1. Experimental results and other theoretical calculations have also been described in Figure 1.]

References

  1. S. Anzellini, V. Montesequro, E. Bandiello, A. Dewaele, L. Burakovsky, D. Errandoma, Scientific Report 9, 13034 (2019)

    Article  ADS  Google Scholar 

  2. D. Errandonea, L. Burakovsky, D.L. Preston, S.G. Macleod, D.S. Perez, S. Chen, H. Cynn, S.I. Simak, M.I. McMahon, J.E. Procter, M. Mezovar, Commun. Mater. 1, 60 (2020)

    Article  Google Scholar 

  3. S. Anzellini, L. Barakovsky, R. Turnbull, E. Bandiello, D. Errandonea, Curr. Comput.-Aided Drug Des. 11, 452 (2021)

    Google Scholar 

  4. G. Weck, V. Recoules, J. A. Queyroux, F. Datchi, J. Bouchet, S. Ninet, G. Garbarino, M. Mezouar, P. Loubeyre, Phys. Rev. B 110, 014106 (2020)

    Article  ADS  Google Scholar 

  5. Y. Zhang, Y. Tan, H.Y. Geng, N.P. Salke, Z. Gao, J. Li, T. Sekine, Q. Wang, E. Greenberg, V.B. Prakapenka, J-F. Lin, Phys. Rev. B 102, 214104 (2020)

    Article  ADS  Google Scholar 

  6. S.R. Baty, L. Burakovsky, D. Errandonea, Crystal 11, 573 (2021)

    Article  Google Scholar 

  7. P. Parisiades, F. Cova, G. Garbarino, Phys. Rev. B 100, 054102 (2019)

    Article  ADS  Google Scholar 

  8. B. A. Buffett, Science 299, 1675 (2003)

    Article  Google Scholar 

  9. R. Boehler, Nature 363, 534 (1993)

    Article  ADS  Google Scholar 

  10. R. Boehler, N.V. Bargen, A. Chopelas, J. Geophys Research 95, 21731 (1990)

    Article  ADS  Google Scholar 

  11. R. Boehler, D.S. Perez, D. Errandonea, M. Mezovar, J. Phys.: Conf. Ser. 121, 022018 (2008)

    Google Scholar 

  12. S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard, Science 340, 464 (2013)

    Article  ADS  Google Scholar 

  13. G. Morard, S. Boccato, A.D. Rosa, S. Anzellini, F. Miozzi, L. Henry et al., Geophysical Research Letters 45,79950 (2018)

    Article  Google Scholar 

  14. Y.Z. Ma, M. Somayazulu, G.Y. Shen, H.K. Mao, J.F. Shu, R.J. Hemley, Phys. Eath Planet. inter. 143, 455 (2004)

    Article  ADS  Google Scholar 

  15. G. Y. Shen, V. B. Prakapenka, M. I. Rivers, S. R. Sutton, Phys. Rev. Lett. 92, 185701 (2004)

    Article  ADS  Google Scholar 

  16. G. Aquilanti, A. Trapananti, A. Karandikar, I. Kantor, C. Marini, O. Mathon, S. Pascarelli, R. Boehler, Proc. Nat. Acad. Sci. USA 112, 12042 (2015)

    Article  ADS  Google Scholar 

  17. J.M. Brown, and R.G. McQueen (1986) J. Geophys. Res. 91, 7485

    Article  ADS  Google Scholar 

  18. J.H. Nguyen, N.C. Holmes, Nature 427, 339 (2004)

    Article  ADS  Google Scholar 

  19. Q. Williams, R. Jeanloz, J. Bass, B. Svendsen, T.J. Ahrens, Science 236, 181 (1987)

    Article  ADS  Google Scholar 

  20. C.S. Yoo, N. C. Holmes, M. Ross, D.J. Webb, C. Pike, Phys. Rev. Lett. 70, 3931 (1993)

    Article  ADS  Google Scholar 

  21. J. Li, Q. Xiong, J. Li, T. Xue, Y. Tan, X. Zhou, Y. Zhang, Z. Xiong, Z. Gao, T. Sekine, Geophys. Research Lett. 47, 87758 (2020)

    ADS  Google Scholar 

  22. R. Sinmyo, K. Hirose, Y. Ohishi, Earth Planet. Sci. Lett. 510, 45 (2019)

    Article  ADS  Google Scholar 

  23. D. Zhang, J.M. Zhao, W. Sturhahn, E.E. Alp, M.Y. Hu, et al., Earth Planet. Sci. Lett. 447, 72 (2016)

    Article  ADS  Google Scholar 

  24. J.D. Bass, B. Svendsen, T.J. Ahrens, Geophys. Mon. Ser. 39, 393 (1987)

    ADS  Google Scholar 

  25. M. Harmand, A. Ravasio, S. Mazevet, J. Bouchet, A. Denoeud, F. Dorchies, et al., Phys. Rev. B 92, 024108 (2015)

    Article  ADS  Google Scholar 

  26. Y. Ping, F. Coppari, D.G. Hicks, B. Yaakobi, D.E. Fratanduono, S. Hamel, et al., Phys. Rev. Lett. 111, 065501 (2013)

    Article  ADS  Google Scholar 

  27. D. Alfe, Phys. Rev. B 79, 060101 (2009)

    Article  ADS  Google Scholar 

  28. A.B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. Lett. 84, 3638 (2000)

    Article  ADS  Google Scholar 

  29. J. Bouchet, S. Mazevet, G. Morard, F. Guyot, R. Musella, Phys. Rev. B 87, 094102 (2013)

    Article  ADS  Google Scholar 

  30. A. Laio, S. Bernard, G. Chiarotti, S. Scandolo, E. Tosatti, Science 287, 5455 (2000)

    Article  Google Scholar 

  31. E. Sola, D. Alfe, Phys Rev. Lett. 103, 078501 (2009)

    Article  ADS  Google Scholar 

  32. T. Sun, J.P. Brodholt, Y. Li, L. Vocadlo, Phys. Rev. B 98, 224301 (2018)

  33. D. Alfe, G. Price, M. Gillan, Phys. Rev. B 65, 165118 (2002)

  34. F. Lindemann, Phys. Z. 11, 609 (1910)

    Google Scholar 

  35. K. Masuda-Jindo, V.V. Hung, P.D. Tam, Phys Rev. B 67, 094301 (2003)

    Article  ADS  Google Scholar 

  36. N. Tang, V.V. Hung, Phys. Sat. Sol. (b) 149, 511 (1988)

    Article  ADS  Google Scholar 

  37. N.A. Smirnov, Y.M. Chen, X.R. Chen, Q. Wu, J. Phys. Condens. Matter 29, 105402 (2017)

    Article  ADS  Google Scholar 

  38. H.K. Hieu , N.N. Ha, AIP Advance 3, 112125 (2013)

    Article  ADS  Google Scholar 

  39. H.K. Hieu, J. Appl. Phys. 116, 163505(2014)

    Article  ADS  Google Scholar 

  40. P.D. Tan, J. Phys.: Conf. Ser. 1932, 012006 (2021)

    Article  Google Scholar 

  41. S. Zhen, G.J. Davies, Phys. Stat. Sol. 78, 595 (1983)

    Article  ADS  Google Scholar 

  42. P.D. Tam, N.Q. Hoc, B.D. Tinh, P.D. Tan, Mod. Phys. Lett. B 30, 1550237 (2016)

    Article  Google Scholar 

  43. P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova, Sci. Rep. 7, 41863 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the reviewer for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to Pham Dinh Tam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, P.D., Tam, P.D. Melting curve of iron up to 3600 kbar by statistical moment method. Eur. Phys. J. B 95, 7 (2022). https://doi.org/10.1140/epjb/s10051-021-00263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00263-z

Navigation