Skip to main content
Log in

Iron and Its Compounds in the Earth’s Core: New Data and Ideas

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Iron is the most abundant chemical element of the Earth’s core and makes up more than 85 wt % of its mass, with the remaining ~15% thought to be Ni and some lighter elements: Si, C, S, O, and H. The paper presents and analyzes newly acquired data on the transformations of iron and its compounds at high temperature and pressure, corresponding to those in the Earth’s core, and discusses the structural types of mineralogically possible polymorphic modifications of iron and its compounds in the deep geospheres in the Earth’s core. New data on changes in the electronic structure of iron atoms at high pressure are presented. Preexisting concepts are expanded and new ideas are suggested for the forms of concentration of chemical elements at ultra-high temperature and pressure. It is concluded that current understanding of the characteristics and properties of the Earth’s mantle and core are not only based on data provided by geological and geophysical methods but are also specified with the application of micro-mineralogical and crystallographic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

Notes

  1. Here and below, concentrations of elements (in wt %) in the core are given according to (Treatise on Geochemistry, 2nd edition, 2014. Editors-in-Chief: Heinrich D. Holland and Karl K. Turekian, Elsevier Ltd., 9144 p.).

REFERENCES

  1. D. Andrault, G. Fiquet, Th. Charpin, and T. Le Bihan, “Structure analysis and stability field of β-iron at high P and T,” Am. Mineral. 85, 364–371 (2000).

    Article  Google Scholar 

  2. S. Anzellini, “Phase diagram of iron under extreme conditions measured with time resolved methods,” General Physics. Université Pierre et Marie Curie - Paris VI, (2014).

  3. Z. G. Bazhanova, A R. Oanov, and O. Janola, “Fe–C and Fe–H systems at pressure of Earth’s inner core,” Usp. Fiz. Khim. 182, 521–530 (2012).

    Article  Google Scholar 

  4. Z. G. Bazhanova, V. V. Roizen, and A. R. Oganov, “Behavior of the Fe–S system at high pressure and Earth’s core composition, ” Usp. Fiz. Khim. 187, 1105–1113 (2017).

    Article  Google Scholar 

  5. A. B. Belonoshko, T. Lukinov, J. Fu, J. Zhao, S. Davis, and S. I. Simak, “Stabilization of body-centred cubic iron under inner-core conditions,” Nature Geosci. 10, 312–316 (2017).

    Article  Google Scholar 

  6. E. Bykova, L. Dubrovinsky, N. Dubrovinskaia, M. Bykov, C. McCammon, S. V. Ovsyannikov, H.-P. Liermann, I. Kupenko, A. I. Chumakov, R. Rueffer, M. Hanfland, and V. Prakapenka,” Structural complexity of simple Fe2O3 at high pressures and temperatures,” Nat. Commun. 7 (10661), 1–6 (2016).

    Article  Google Scholar 

  7. S. M. Dorfman, J. Badro, F. Nabiei, V. B. Prakapenka, M.  Cantoni, and Ph. Gillet, “Carbonate stability in the reduced lower mantle,” Earth Planet. Sci. Lett. 489, 84–91 (2018).

    Article  Google Scholar 

  8. L. Dubrovinsky, N. Dubrovinskaia, O. Narygina, I. Kantor, A. Kuznetzov, V. B. Prakapenka, L.Vitos, B. Johansson, A. S. Mikhaylushkin, S. I. Simak, and I. A. Abrikosov, “Body-centered cubic iron-nickel alloy in Earth’s core,” Science 316, 1880–1883 (2007). https://doi.org/10.1126/science.1142105

    Article  Google Scholar 

  9. Y. Fei, J. Li, C. M. Bertka, and Ch. T. Prewitt, “Structure type and bulk modulus of Fe3S, a new iron-sulfur compound,” Am. Mineral. 85, 1830–1833 (2000).

    Article  Google Scholar 

  10. R. A. Fischer, A. J. Campbell, B. Chidester, D. M. Reaman, E. C. Thompson, J. C. Piggot, V. B. Prakapenka, and J. S. Smith Equations of state and phase boundary for stishovite and CaCl2-type SiO2. Amer. Mineral. 103, 792–802 (2018).

    Article  Google Scholar 

  11. R. Hrubiak, Y. Meng, and G. Shen, “Experimental evidence of a body centered cubic iron at the Earth’s core condition,” arXiv:1804.05109v1 [physics.geo-ph] (2018).

  12. Q. Hu, D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H-K. Mao, “FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles,” Nature 534 (7606), 241–244 (2016).

    Article  Google Scholar 

  13. Q. Hu D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H.-K. Mao, “Dehydrogenation of goethite in Earth’s deep lower mantle,” Proc Natl Acad Sci USA 114 (7), 1498–1501 (2017).

  14. S. Huang, X. Wu, and S. Qin, “Stability and anisotropy of (FexNi1−x)2O under high pressure and implications in Earth’s and super-Earth’s core,” Sci. Rep. 8 (236) (2018).

  15. Y. Ikeda, A. Seko, and I. Togo, “Phonon softening in paramagnetic bcc Fe and relationship with pressure-induced phase transition,” Phys. Rev. B90 (13), 134106 (2014).

    Article  Google Scholar 

  16. T. Irifune, K. Fujino, and E. Ohtani, “A new high pressure form of MgAl2O4,” Nature 349, 409–411 (1991).

    Article  Google Scholar 

  17. F. V. Kaminsky, The Earth’s Lower Mantle: Composition and Structure (Springer, 2017).

  18. K. J. Kingma, R. E. Cohen, R. J. Hemley, and H.-K. Mao, “Transformation of stishovite to a denser phase at lower-mantle pressures,” Nature 374, 243–245 (1995).

    Article  Google Scholar 

  19. A. G. Kvashnin, I. A. Kruglov, D. V. Semenok, and A. R. Oganov, Iron superhydrides FeH5 and FeH6: stability, electronic properties and superconductivity,” J. Phys. Chem. C, 122 (8), 4731–4736 (2018).

    Article  Google Scholar 

  20. B. Lavina and Y. Meng, “Unraveling the complexity of iron oxides at high pressure and temperature: synthesis of Fe5O6,” Sci. Adv. 1, e140026 (2015) 0.

  21. K. D. Litasov and A. F. Shatsky, Composition and Structure of Earth’s Core (SO RAN, Novosibirsk, 2016a) [in Russian].

    Google Scholar 

  22. K. D. Litasov and A. F. Shatskiy, “Composition of the Earth’s core: a review,” Modern concepts in the composition of Earth core," Russ. Geol. Geophys. 57 (1), 22–46 (2016b).

    Article  Google Scholar 

  23. M. Nishi, Y. Kuwayama, J. Tsuchiya, and T. Tsuchiya, “The pyrite-type high-pressure form of FeOOH.” Nature 547 (7662), 205–208 (2017).

    Article  Google Scholar 

  24. S. Ono, T. Kikegawa, and Y. Ohishi, “High-pressure phase transition of hematite, Fe2O3,” J. Phys. Chem. Solids 65 (8–9), 1527–1530 (2004).

    Article  Google Scholar 

  25. M. Owusu, H. Jawad, T. Lundstrőm, and S. Rundqvist, “Crystallographic studies of Cr3P and the solid solution of hydrogen in Zn3P,” Phys. Scr. 6, 65–70 (1972).

    Article  Google Scholar 

  26. Yu. M. Pushcharovsky and D. Yu. Pushcharovsky, Geology of Earth’s Mantle (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  27. D. Pushcharovsky, and Yu. Pushcharovsky, “The mineralogy and the origin of deep geospheres: a review,” Earth-Sci. Rev. 113 (2), 94–109 (2012).

    Article  Google Scholar 

  28. Yu. M. Pushcharovsky and D. Yu. Pushcharovsky, “New insight into the composition and the structure of the deep layers of the terrestrial planets,” Moscow Univ. Geol. Bull. 71 (1), 1–7 (2016).

    Article  Google Scholar 

  29. E. C. Robertson, “The interior of the Earth,” Geol. Surv. Circ. (1966).

  30. T. Sakai, E. Ohtani, N. Hirao, and Y. Ohishi, “Stability field of the hcp-structure for Fe, Fe-Ni, and Fe-Ni-Si alloys up to 3 Mbar,” Geophys. Res. Lett. 38, L09302 (2011)

    Article  Google Scholar 

  31. S. K. Saxena, L. S. Dubrovinsky, and P. Häggkvist, “X-ray evidence for the new phase of β-iron at high temperature and high pressure,” Geophys. Res. Lett. 23, 2441–2444 (1996).

    Article  Google Scholar 

  32. D. M. Sherman, “The composition of the Earth’s core: constraints on S and Si vs. temperature,” Earth Planet. Sci. Lett. 153 (3–4), 149–155 (1997).

    Article  Google Scholar 

  33. A. O. Shorikov, V. V. Roizen, A. R. Oganov, and V. I. Anisimov, “Role of temperature and Coulomb correlation in the stabilization of the CsCl-type phase in FeS under pressure,” Phys. Rev. B 98 (9), 094112 (2018).

    Article  Google Scholar 

  34. E. M. Smith, S. B. Shirey, F. Nestola, E. S. Bullock, J. Wang, S. H. Richardson, and W. Wang, “Large gem diamonds from metallic liquid in Earth’s deep mantle,” Science 354 (6318), 1403-1405 (2016);

    Article  Google Scholar 

  35. https://doi.org/10.1126/science.aal1303

  36. U. W. Starke, C. Meier, J. Rath,W. Weiß Schardt, and K. Heinz, “Phase transition and atomic structure of an Fe3Si(100) single crystal surface,” Surf. Sci. 377–379, 539–543 (1997).

    Article  Google Scholar 

  37. E. Stavrou, Y. Yao, A. F. Goncharov, S. S. Lobanov, J. M. Zaug, H. Liu, E. Greenberg, and V. B. Prakapenka, “Synthesis of xenon and iron–nickel intermetallic compounds at Earth’s core thermodynamic conditions,” Phys. Rev. Lett. 120, 096001-096001-6 (2018).

    Article  Google Scholar 

  38. S. Tateno, K. Hirose, T. Komabayashi, H. Ozawa, and Y. Ohishi “The structure of Fe–Ni alloy in Earth’s inner core,” Geophys. Res. Lett. 39, L12305 (2012). https://doi.org/10.1029/2012GL052103

    Article  Google Scholar 

  39. S. Tateno, Y. Kuwayama, K. Hirose, and Y. Ohishi, “The structure of Fe–Si alloy in Earth’s inner core,” Earth Planet. Sci. Lett. 418, 11–19 (2015).

    Article  Google Scholar 

  40. T. Wang, X. Song, and H. H. Xia, “Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda,” Nature Geosci. 8 (3), 224–227 (2015).

    Article  Google Scholar 

  41. G. L. Weerasinghe, R. G. Needs, and Ch. J. Pickard, “Computational searches for iron oxides at high pressures,” J. Phys. Condens. Matter. 27, 455501 (2015). https://doi.org/10.1088/0953-8984/27/45/455501

    Article  Google Scholar 

  42. J. K. Wicks, R. F. Smith, D. E. Fratanduono, F. Coppari, R. G. Kraus, M. G. Newman, J. R. Rygg, J. H. Eggert, and T. S. Duffy, “Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions,” Science Adv. 4 (4) (2018). https://doi.org/10.1126/sciadv.aao5864

  43. S. Xu, J. F. Lin, and D. Morgan, “Iron partitioning between ferropericlase and bridgmanite in the Earth’s lower mantle,” J. Geophys. Res. Solid Earth 122, 1074–1087 (2017). https://doi.org/10.1002/2016JB013543

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks A.R. Oganov for discussion and valuable comments during the preparation of the manuscript.

Funding

This study was financially supported by the Russian Foundation for Basic Research, project no. 18-05-00332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Pushcharovsky.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushcharovsky, D.Y. Iron and Its Compounds in the Earth’s Core: New Data and Ideas. Geochem. Int. 57, 941–955 (2019). https://doi.org/10.1134/S0016702919090088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919090088

Keywords:

Navigation