Skip to main content
Log in

Supernova implosion-explosion in the light of catastrophe theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The present understanding of supernova explosion of massive stars as a two-step process, with an initial gravitational collapse toward the center of the star followed by an expansion of matter after a bouncing on the core, meets several difficulties. We show that it is not the only possible one: a simple model based on fluid mechanics, catastrophe theory, and stability properties of the equilibrium state shows that one can have also a simultaneous inward/outward motion in the early stage of the instability of the supernova described by a dynamical saddle-center bifurcation. The existence of this simultaneous inward/outward motion is sensitive to the model in such systems with long-range interactions. If a constant temperature is assumed (canonical ensemble), an overall inward motion occurs, but if one imposes with the same equation of state the constraint of energy conservation (microcanonical ensemble) there is an inward velocity field near the center of the star together with an outward velocity field in the rest of the star. We discuss the expansion stage of the remnants away from the collapsed core, and propose a new explanation for the formation of shock waves in the ejecta which differs from the usual Sedov–Taylor self-similar description.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  2. A. Burrows, Rev. Mod. Phys. 85, 245 (2013)

    Article  ADS  Google Scholar 

  3. Y. Pomeau, M. Le Berre, P.H. Chavanis, B. Denet, Eur. Phys. J. E 37, 26 (2014)

    Article  Google Scholar 

  4. Y. Pomeau, M. Le Berre, C. Narteau, P. Fromy, inComptes-rendus de la 14ème Rencontre du Non-Linéaire, edited by C. Josserand et al. (Non-Linéaire publication, Paris, 2011), pp. 139–144

  5. R.D. Peters, M. Le Berre, Y. Pomeau, Phys. Rev. E 86, 026207 (2012)

    Article  ADS  Google Scholar 

  6. A.J.K. Phillips, P.A. Robinson, Phys. Rev. E 79, 021913 (2009)

    Article  ADS  Google Scholar 

  7. Y. Pomeau, M. Le Berre, Chaos, CNN, inMemristors and Beyond, edited by A. Adamatzky, G. Chen, (World Scientific, Singapore, 2012)

  8. Y. Pomeau, M. Le Berre, https://arXiv:1107.3331

  9. P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006)

    Article  ADS  Google Scholar 

  10. V.A. Antonov, Vest. Leningrad Univ. 7, 135 (1962) [translation in IAU symp. 113, 525 (1985)]

    ADS  Google Scholar 

  11. M. Hénon Ann. Astrophys. 24, 369 (1961)

    ADS  MathSciNet  Google Scholar 

  12. M.L. Chabanol, F. Corson, Y. Pomeau, Europhys. Lett. 50, 148 (2000)

    Article  ADS  Google Scholar 

  13. Y. Pomeau, Statistical Mechanics of Gravitational Plasma, inProceedings of 2nd Warsaw School of Statistical physics (University of Warsaw Press, Warsaw, Poland, 2008), pp. 165–207

  14. P.H. Chavanis, Astron. Astrophys. 556, A93 (2013)

    Article  ADS  Google Scholar 

  15. M. Le Berre, Y. Pomeau, P.H. Chavanis, B. Denet, Supernova: Explosion or Implosion? inComptes-rendus de la 17ème Rencontre du Non-Linéaire, edited by E. Falcon, M. Lefranc, F. Pétrélis, C.T. Pham (Non-Linéaire publication, Paris, 2014)

  16. R. Emden,Gaskugeln Anwendungen der Mechanischen Wärmetheorie auf Kosmologische und Meteorologie Probleme (Teubner, Leipzig, 1907)

  17. S. Chandrasekhar,An Introduction to the Theory of Stellar Structure (Dover, Illinois, US, 1942)

  18. P.H. Chavanis, Astron. Astrophys. 381, 340 (2002)

    Article  ADS  Google Scholar 

  19. H. Poincaré, Acta Math. 7, 259 (1885)

    Article  MathSciNet  Google Scholar 

  20. J. Katz, Mon. Not. R. Astron. Soc. 183, 765 (1978)

    Article  ADS  Google Scholar 

  21. H. Nessyahu, E. Tadmor, J. Comput Phys. 87, 408 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Balbas, E. Tadmor, CentPack, http://www.cscamm.umd.edu/centpack

  23. Z.G.I. Barenblatt, Y.B. Zel’dovich, Ann. Rev. Fluid Mech. 4, 285 (1972)

    Article  ADS  Google Scholar 

  24. M.V. Penston, Mon. Not. R. Astron. Soc. 144, 425 (1969)

    Article  ADS  Google Scholar 

  25. C. Josserand, Y. Pomeau, S. Rica, J. Low Temp. Phys. 145, 231 (2006)

    Article  ADS  Google Scholar 

  26. J. Sopik, C. Sire, P.H. Chavanis, Phys. Rev. E 74, 011112 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  28. P.H. Chavanis, in preparation

  29. L. Spitzer,Diffuse Matter in Space (Wiley, New York, 1968)

  30. L. Spitzer,Physical Processes in the Interstellar Medium (Wiley, New York, 1977)

  31. L.D. Landau, E.M. Lifshitz,Fluid Mechanics, Course of Theoretical Physics (Pergamon, Oxford, 1987)

  32. L.I. Sedov, J. Appl. Math. Mech. 10, 241 (1946)

    Google Scholar 

  33. R. Latter, J. Appl. Phys. 26, 954 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Lockwood-Taylor, Phil. Mag. 46, 317 (1955)

    Article  Google Scholar 

  35. M.J. Klein,Principles of the Theory of Heat (D. Reidel Publishing Company, Dordrecht, 1986)

  36. G. Ranque, J. Phys. Rad. 4, 112 (1933)

    Google Scholar 

  37. D. Lynden-Bell, R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968)

    Article  ADS  Google Scholar 

  38. C. Sire, P.H. Chavanis, Phys. Rev. E 66, 046133 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Alberti, P.H. Chavanis, https://arXiv:1808.01007

  40. Z. Roupas, P.H. Chavanis, Class. Quantum Gravity 36, 065001 (2019)

    Article  ADS  Google Scholar 

  41. S. Chandrasekhar, Astrophys. J. 74, 81 (1931)

    Article  ADS  Google Scholar 

  42. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  43. D. Lynden-Bell, P.P. Eggleton, Mon. Not. R. Astron. Soc. 191, 483 (1980)

    Article  ADS  Google Scholar 

  44. S. Inagaki, D. Lynden-Bell, Mon. Not. R. Astron. Soc. 205, 913 (1983)

    Article  ADS  Google Scholar 

  45. W. Thirring, Z. Physik 235, 339 (1970)

    Article  ADS  Google Scholar 

  46. C. Sire, P.H. Chavanis, Phys. Rev. E 78, 061111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavanis, PH., Denet, B., Le Berre, M. et al. Supernova implosion-explosion in the light of catastrophe theory. Eur. Phys. J. B 92, 271 (2019). https://doi.org/10.1140/epjb/e2019-100435-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100435-6

Keywords

Navigation