Skip to main content
Log in

Electric field response in breathing pyrochlores

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the effects of a uniform electric field on the ground state and excitations of the three-dimensional U(1) spin liquid phase of a breathing pyrochlore lattice, arising due to the coupling between the conventional (Maxwell) electric field and the emergent electrodynamics of the quantum spin ice material. This is an extension of the studies for isotropic pyrochlores in [Phys. Rev. B 96, 125145 (2017)] to the anisotropic case, as the lattice inversion symmetry is broken in breathing pyrochlores. The emergent photons are found to exhibit birefringence, analogous to the isotropic case. However, the system possesses a nonzero polarization even in the absence of an external electric field, unlike the isotropic pyrochlore. We also find that a sufficiently strong electric field triggers a quantum phase transition into new U(1) quantum spin liquid phases which trap π-fluxes of the emergent electric field. Such transitions are seen to occur even when the applied electric field is along a direction that does not show a phase transition in the isotropic limit.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Anderson, Mater. Res. Bull. 8, 153 (1973)

    Article  Google Scholar 

  2. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  3. L. Balents, Nature 464, 199 (2010)

    Article  ADS  Google Scholar 

  4. R. Moessner, S.L. Sondhi, Prog. Theor. Phys. Suppl. 145, 37 (2002)

    Article  ADS  Google Scholar 

  5. L. Savary, L. Balents, Rep. Prog. Phys. 80, 016502 (2017)

    Article  ADS  Google Scholar 

  6. J. Knolle, R. Moessner, Annu. Rev. Condens. Matter Phys. 10, 451 (2019)

    Article  ADS  Google Scholar 

  7. R. Coldea, D.A. Tennant, A.M. Tsvelik, Z. Tylczynski, Phys. Rev. Lett. 86, 1335 (2001)

    Article  ADS  Google Scholar 

  8. Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. Lett. 91, 107001 (2003)

    Article  ADS  Google Scholar 

  9. J.S. Helton, K. Matan, M.P. Shores, E.A. Nytko, B.M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.H. Chung et al., Phys. Rev. Lett. 98, 107204 (2007)

    Article  ADS  Google Scholar 

  10. C. Balz, B. Lake, J. Reuther, H. Luetkens, R. Schönemann, T. Herrmannsdörfer, Y. Singh, A.T.M. Nazmul Islam, E.M. Wheeler, J.A. Rodriguez-Rivera et al., Nat. Phys. 12, 942 (2016)

    Article  Google Scholar 

  11. A. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  ADS  Google Scholar 

  12. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008)

    Article  ADS  Google Scholar 

  13. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001)

    Article  ADS  Google Scholar 

  14. M.J. Gingras, P.A. McClarty, Rep. Prog. Phys. 77, 056501 (2014)

    Article  ADS  Google Scholar 

  15. Y. Okamoto, G.J. Nilsen, J.P. Attfield, Z. Hiroi, Phys. Rev. Lett. 110, 097203 (2013)

    Article  ADS  Google Scholar 

  16. Y. Tanaka, M. Yoshida, M. Takigawa, Y. Okamoto, Z. Hiroi, Phys. Rev. Lett. 113, 227204 (2014)

    Article  ADS  Google Scholar 

  17. J.G. Rau, L.S. Wu, A.F. May, L. Poudel, B. Winn, V.O. Garlea, A. Huq, P. Whitfield, A.E. Taylor, M.D. Lumsden et al., Phys. Rev. Lett. 116, 257204 (2016)

    Article  ADS  Google Scholar 

  18. T. Haku, M. Soda, M. Sera, K. Kimura, S. Itoh, T. Yokoo, T. Masuda, J. Phys. Soc. Jpn. 85, 034721 (2016)

    Article  ADS  Google Scholar 

  19. K. Kimura, S. Nakatsuji, T. Kimura, Phys. Rev. B 90, 060414 (2014)

    Article  ADS  Google Scholar 

  20. L. Savary, X. Wang, H.Y. Kee, Y.B. Kim, Y. Yu, G. Chen, Phys. Rev. B 94, 075146 (2016)

    Article  ADS  Google Scholar 

  21. E. Lantagne-Hurtubise, S. Bhattacharjee, R. Moessner, Phys. Rev. B 96, 125145 (2017)

    Article  ADS  Google Scholar 

  22. M. Hermele, M.P.A. Fisher, L. Balents, Phys. Rev. B 69, 064404 (2004)

    Article  ADS  Google Scholar 

  23. O. Benton, O. Sikora, N. Shannon, Phys. Rev. B 86, 075154 (2012)

    Article  ADS  Google Scholar 

  24. L.J. Chang, S. Onoda, Y. Su, Y.J. Kao, K.D. Tsuei, Y. Yasui, K. Kakurai, M.R. Lees, Nat. Commun. 3, 992 (2012)

    Article  ADS  Google Scholar 

  25. G. Chen, Phys. Rev. B 96, 085136 (2017)

    Article  ADS  Google Scholar 

  26. D. Khomskii, Nat. Commun. 3, 904 (2012)

    Article  ADS  Google Scholar 

  27. G.H. Golub, C.F. Van Loan, inMatrix Computations (Johns Hopkins University Press, 2012), Vol. 3

  28. L. Savary, L. Balents, Phys. Rev. Lett. 108, 037202 (2012)

    Article  ADS  Google Scholar 

  29. S. Lee, S. Onoda, L. Balents, Phys. Rev. B 86, 104412 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, I. Electric field response in breathing pyrochlores. Eur. Phys. J. B 92, 187 (2019). https://doi.org/10.1140/epjb/e2019-100215-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100215-4

Keywords

Navigation