Advertisement

Kinetic models for optimal control of wealth inequalities

  • Bertram DüringEmail author
  • Lorenzo Pareschi
  • Giuseppe Toscani
Open Access
Regular Article

Abstract

We introduce and discuss optimal control strategies for kinetic models for wealth distribution in a simple market economy, acting to minimize the variance of the wealth density among the population. Our analysis is based on a finite time horizon approximation, or model predictive control, of the corresponding control problem for the microscopic agents’ dynamic and results in an alternative theoretical approach to the taxation and redistribution policy at a global level. It is shown that in general the control is able to modify the Pareto index of the stationary solution of the corresponding Boltzmann kinetic equation, and that this modification can be exactly quantified. Connections between previous Fokker–Planck based models for taxation-redistribution policies and the present approach are also discussed.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    T. Piketty, Capital in the Twenty-First Century (Harvard University Press, Cambridge, MA, 2013) Google Scholar
  2. 2.
    P. Degond, J.-G. Liu, J. Stat. Phys.  154, 751 (2014) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Düring, D. Matthes, G. Toscani, Phys. Rev. E 78, 056103 (2008) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    B. Düring, D. Matthes and G. Toscani. A Boltzmann-type approach to the formation of wealth distribution curves. Riv. Mat. Univ. Parma (8) 1, 199 (2009) MathSciNetzbMATHGoogle Scholar
  5. 5.
    L. Pareschi, G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford University Press, Oxford, UK, 2014) Google Scholar
  6. 6.
    J. Angle, Soc. Forces  65, 293 (1986) CrossRefGoogle Scholar
  7. 7.
    E. Scalas, U. Garibaldi, S. Donadio, Eur. Phys. J. B 53, 267 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    A. Drǎgulescu, V. Yakovenko, Eur. Phys. J. B 17, 723 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    C. Cercignani, in The Boltzmann Equation and Its Applications (Springer Series in Applied Mathematical Sciences, New York, 1988), Vol. 67 Google Scholar
  10. 10.
    C. Cercignani, R. Illner, M. Pulvirenti, in The Mathematical Theory of Dilute Gases (Springer Series in Applied Mathematical Sciences, New York, 1994), Vol. 106 Google Scholar
  11. 11.
    V. Pareto, Cours d’économie politique, Tome II Livre III (F. Pichon Imprimeur-Éditeur, Paris, France, 1897) Google Scholar
  12. 12.
    S. Cordier, L. Pareschi, G. Toscani, J. Stat. Phys.  120, 253 (2005) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Chakraborti, Int. J. Mod. Phys. C 13, 1315 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    A. Chakraborti, B.K. Chakrabarti, Eur. Phys. J. B 17, 167 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    M. Bisi, Boll. Unione Mat. Ital.  10, 143 (2017) MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Bisi, G. Spiga, G. Toscani, Commun. Math. Sci. 7, 901 (2009) MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Toscani, Europhys. Lett. 88, 10007 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    L. Pareschi, G. Toscani, Philos. Trans. R. Soc. A  372, 20130396 (2017) CrossRefGoogle Scholar
  19. 19.
    B. Düring, G. Toscani, Physica A 384, 493 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    G. Toscani, Rend. Lincei Mat. Appl.  28, 451 (2017) Google Scholar
  21. 21.
    E. Perversi, E. Regazzini, Math. Models Methods Appl. Sci.  26, 1735 (2016) MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Albi, M. Herty, L. Pareschi, Commun. Math. Sci. 13, 1407 ( 2015) MathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Albi, L. Pareschi, M. Zanella, Philos. Trans. R. Soc. A  372, 20140138 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    G. Albi, L. Pareschi, G. Toscani, M. Zanella, Recent advances in opinion modeling: control and social influence, in Active Particles, Vol. 1: Theory, Models, Applications, edited by N. Bellomo, P. Degond, E. Tadmor (Birkhäuser, Boston, 2017), Chap. 2, pp. 49–98 Google Scholar
  25. 25.
    M. Krstic, I. Kanellakopoulos, P.V. Kokotovic, Nonlinear and Adaptive Control Design (John Wiley and Sons Inc., New York, 1995) Google Scholar
  26. 26.
    E. D. Sontag, Mathematical control theory, in Texts in Applied Mathematics, 2nd edn. (Springer-Verlag, New York, 1998), Vol. 6 Google Scholar
  27. 27.
    M. Herty, S. Steffensen, L. Pareschi, Netw. Heterog. Media 10, 699 (2015) MathSciNetCrossRefGoogle Scholar
  28. 28.
    E. Camacho, C. Bordons, Model Predictive Control (Springer, USA, 2004) Google Scholar
  29. 29.
    D. Matthes, G. Toscani, J. Stat. Phys.  130, 1087 (2008) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Devitt-Lee, H. Wang, J. Li, B. Boghosian, SIAM J.  Appl. Math.  78, 996 (2017) CrossRefGoogle Scholar
  31. 31.
    J.F. Bouchaud, M. Mézard, Physica A 282, 536 (2000) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Sussex, Pevensey IIBrightonUK
  2. 2.Dipartimento di Matematica e InformaticaFerraraItaly
  3. 3.Dipartimento di Matematica and IMATI, CNRPaviaItaly

Personalised recommendations