Skip to main content
Log in

Density-functional energy gaps of solids demystified

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn–Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn–Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn–Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange–correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  2. A. Seidl, A. Görling, P. Vogl, J.A. Majewski, M. Levy, Phys. Rev. B 53, 3764 (1996)

    Article  ADS  Google Scholar 

  3. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  4. M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996)

    Article  ADS  Google Scholar 

  5. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  6. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  7. J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Ying, A. Paul, U. Waghmare, X. Wu, M.L. Klein, J.P. Perdew, Nat. Chem. 8, 831 (2016)

    Article  Google Scholar 

  8. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  9. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)

    Article  ADS  Google Scholar 

  10. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  11. J.F. Janak, Phys. Rev. B 18, 7165 (1978)

    Article  ADS  Google Scholar 

  12. A.R. Williams, U. von Barth, in Theory of the inhomogeneous electron gas, edited by S. Lundqvist, N.H. March (Plenum, NY, 1983)

  13. J.P. Perdew, Int. J. Quant. Chem. S19, 497 (1985)

    Google Scholar 

  14. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  15. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  16. L.J. Sham, M. Schlueter, Phys. Rev. Lett. 51, 1888 (1983)

    Article  ADS  Google Scholar 

  17. M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984)

    Article  ADS  Google Scholar 

  18. A. Patra, J.E. Bates, J. Sun, J.P. Perdew, Proc. Natl. Acad. Sci. U.S.A. 114, E9188 (2017)

    Article  ADS  Google Scholar 

  19. R.J. Bartlett, Chem. Phys. Lett. 484, 1 (2009)

    Article  ADS  Google Scholar 

  20. J.D. Talman, W.F. Shadwick, Phys. Rev. A 14, 36 (1976)

    Article  ADS  Google Scholar 

  21. R.J. Magyar, A. Fleszar, E.K.U. Gross, Phys. Rev. B 69, 04511 (2004)

    Article  Google Scholar 

  22. A.J. Garza, G.E. Scuseria, J. Phys. Chem. Lett. 7, 4165 (2016)

    Article  Google Scholar 

  23. R. Neumann, R. Nobes, N.C. Handy, Mol. Phys. 87, 1 (1996)

    Article  ADS  Google Scholar 

  24. Z. Yang, H. Peng, J. Sun, J.P. Perdew, Phys. Rev. B 93, 205205 (2016)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, W. Yang, K. Burke, Z. Yang, E.K.U. Gross, M. Scheffler, G.E. Scuseria, T.M. Henderson, I.Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, A. Görling, Proc. Natl. Acad. Sci. U.S.A. 114, 2801 (2017)

    Article  ADS  Google Scholar 

  26. A.J. Cohen, P. Mori-Sanchez, W. Yang, Phys. Rev. B 77, 115123 (2008)

    Article  ADS  Google Scholar 

  27. P. Mori-Sanchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 100, 146401 (2008)

    Article  ADS  Google Scholar 

  28. P. Mori-Sanchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 102, 066403 (2009)

    Article  ADS  Google Scholar 

  29. W. Yang, A.J. Cohen, P. Mori-Sanchez, J. Chem. Phys. 136, 204111 (2012)

    Article  ADS  Google Scholar 

  30. H. Peng, J.P. Perdew, Phys. Rev. B 96, 100101(R) (2017)

    Article  ADS  Google Scholar 

  31. G. Trimarchi, Z. Wang, A. Zunger, Phys. Rev. B 97, 035107 (2018)

    Article  ADS  Google Scholar 

  32. S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J.B. Neaton, L. Kronik, Phys. Rev. B 88, 081204 (2013)

    Article  ADS  Google Scholar 

  33. J.H. Skone, M. Govoni, G. Galli, Phys. Rev. B 89, 1 (2014)

    Article  Google Scholar 

  34. J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, J. Chem. Phys. 124, 154709 (2006)

    Article  ADS  Google Scholar 

  35. F. Tran, D. Koller, P. Blaha, Phys. Rev. B 86, 134406 (2012)

    Article  ADS  Google Scholar 

  36. W. Gao, T.A. Abtew, T. Cai, Y.-Y. Sun, S. Zhang, P. Zhang, Solid State Commun. 234–235, 10 (2016)

    Article  Google Scholar 

  37. J.W. Furness, Y. Zhang, C. Lane, I.G. Buda, B. Barbiellini, R.S. Markiewicz, A. Bansil, J. Sun, Nat. Commun. Phys. 1, 11 (2018)

    Google Scholar 

  38. J.P. Perdew, V.N. Staroverov, J. Tao, G.E. Scuseria, Phys. Rev. A 78, 052513 (2008)

    Article  ADS  Google Scholar 

  39. J.P. Perdew, A. Ruzsinszky, J. Sun, K. Burke, J. Chem. Phys. 140, 18A533 (2014)

    Article  Google Scholar 

  40. T.M. Maier, M. Haasler, A.V. Arbuznikov, M. Kaupp, Phys. Chem. Chem. Phys. 18, 21133 (2016)

    Article  Google Scholar 

  41. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  42. M.R. Pederson, A. Ruzsinszky, J.P. Perdew, J. Chem. Phys. 140, 121103 (2014)

    Article  ADS  Google Scholar 

  43. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  44. M. Kuisma, J. Ojanen, J. Enkovaara, T.T. Rantala, Phys. Rev. B 82, 115106 (2010)

    Article  ADS  Google Scholar 

  45. R. Armiento, S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013)

    Article  ADS  Google Scholar 

  46. E.R. Batista, J. Heyd, R.G. Hennig, B.P. Uberuaga, R.L. Martin, G.E. Scuseria, J.W. Wilkins, Phys. Rev. B 74, 121102 (2006)

    Article  ADS  Google Scholar 

  47. C. Shahi, J. Sun, J.P. Perdew, Phys. Rev. B 97, 094111 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Perdew.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdew, J.P., Ruzsinszky, A. Density-functional energy gaps of solids demystified. Eur. Phys. J. B 91, 108 (2018). https://doi.org/10.1140/epjb/e2018-90083-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90083-y

Navigation