Skip to main content
Log in

Quantum transport in 3D Weyl semimetals: Is there a metal-insulator transition?

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We calculate the transport properties of three-dimensional Weyl fermions in a disordered environment. The resulting conductivity depends only on the Fermi energy and the scattering rate. First we study the conductivity at the spectral node for a fixed scattering rate and obtain a continuous transition from an insulator at weak disorder to a metal at stronger disorder. Within the self-consistent Born approximation the scattering rate depends on the Fermi energy. Then it is crucial that the limits of the conductivity for a vanishing Fermi energy and a vanishing scattering rate do not commute. As a result, there is also metallic behavior in the phase with vanishing scattering rate and only a quantum critical point remains as an insulating phase. The latter turns out to be a critical fixed point in terms of a renormalization-group flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  3. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  4. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Adv. Phys. 59, 261 (2010)

    Article  ADS  Google Scholar 

  5. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  6. M. König et al., Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  7. S. Raghu, S.B. Chung, X.-L. Qi, S.-C. Zhang, Phys. Rev. Lett. 104, 116401 (2010)

    Article  ADS  Google Scholar 

  8. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  9. D. Schmeltzer, A. Saxena, Phys. Rev. B 88, 239904 (2013)

    Article  ADS  Google Scholar 

  10. E. Fradkin, Phys. Rev. B 33, 3263 (1986)

    Article  ADS  Google Scholar 

  11. E. Fradkin, Phys. Rev. B 33, 3257 (1986)

    Article  ADS  Google Scholar 

  12. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  13. J. Smith, S. Banerjee, V. Pardo, W.E. Pickett, Phys. Rev. Lett. 106, 056401 (2011)

    Article  ADS  Google Scholar 

  14. A.A. Burkov, L. Balents, Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  Google Scholar 

  15. A.A. Burkov, M.D. Hook, L. Balents, Phys. Rev. B 84, 235126 (2011)

    Article  ADS  Google Scholar 

  16. G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011)

    Article  ADS  Google Scholar 

  17. W. Witczak-Krempa, Y.B. Kim, Phys. Rev. B 85, 045124 (2012)

    Article  ADS  Google Scholar 

  18. S.M. Young, S. Zaheer, J.C.Y. Teo, C.L. Kane, E.J. Mele, A.M. Rappe, Phys. Rev. Lett. 108, 140405 (2012)

    Article  ADS  Google Scholar 

  19. P. Hosur, S.A. Parameswaran, A. Vishwanath, Phys. Rev. Lett. 108, 046602 (2012)

    Article  ADS  Google Scholar 

  20. Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, Z. Fang, Phys. Rev. B 85, 195320 (2012)

    Article  ADS  Google Scholar 

  21. B. Singh, A. Sharma, H. Lin, M.Z. Hasan, R. Prasad, A. Bansil, Phys. Rev. B 86, 115208 (2012)

    Article  ADS  Google Scholar 

  22. G.Y. Cho, arXiv:1110.1939 (2012)

  23. G.B. Halász, L. Balents, Phys. Rev. B 85, 035103 (2012)

    Article  ADS  Google Scholar 

  24. R. Nandkishore, D.A. Huse, S. Sondhi, Phys. Rev. B 89, 245110 (2014)

    Article  ADS  Google Scholar 

  25. C.-X. Liu, P. Ye, X.-L. Qi, Phys. Rev. B 87, 235306 (2013)

    Article  ADS  Google Scholar 

  26. R.R. Biswas, S. Ryu, Phys. Rev. B 89, 014205 (2014)

    Article  ADS  Google Scholar 

  27. K. Kobayashi, T. Ohtsuki, K.-I. Imura, Phys. Rev. Lett. 110, 236803 (2013)

    Article  ADS  Google Scholar 

  28. Z. Huang, T. Das, A.V. Balatsky, D.P. Arovas, Phys. Rev. B 87, 155123 (2013)

    Article  ADS  Google Scholar 

  29. K. Kobayashi, T. Ohtsuki, K.-I. Imura, I.F. Herbut, Phys. Rev. Lett. 112, 016402 (2014)

    Article  ADS  Google Scholar 

  30. Y. Ominato, M. Koshino, Phys. Rev. B 89, 054202 (2014)

    Article  ADS  Google Scholar 

  31. B. Roy, S. Das Sarma, Phys. Rev. B 90, 241112(R) (2014)

    Article  ADS  Google Scholar 

  32. B. Sbierski, G. Pohl, E.J. Bergholtz, P.W. Brouwer, Phys. Rev. Lett. 113, 026602 (2014)

    Article  ADS  Google Scholar 

  33. S.V. Syzranov, V. Gurarie, L. Radzihovsky, Phys. Rev. Lett. 114, 166601 (2015)

    Article  ADS  Google Scholar 

  34. K. Ziegler, Phys. Rev. Lett. 102, 126802 (2009)

    Article  ADS  Google Scholar 

  35. K. Ziegler, Phys. Rev. B 79, 195424 (2009)

    Article  ADS  Google Scholar 

  36. M.V. Medvedyeva, J. Tworzydło, C.W.J. Beenakker, Phys. Rev. B 81, 214203 (2010)

    Article  ADS  Google Scholar 

  37. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  38. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  39. K. Ziegler, J. Phys. A 45, 335001 (2012)

    Article  MathSciNet  Google Scholar 

  40. K. Ziegler, Phys. Rev. B 55, 10661 (1997)

    Article  ADS  Google Scholar 

  41. K. Ziegler, Phys. Rev. Lett. 80, 3113 (1998)

    Article  ADS  Google Scholar 

  42. K. Ziegler, Eur. Phys. J. B 86, 391 (2013)

    Article  ADS  Google Scholar 

  43. D.J. Thouless, Phys. Rep. 13, 93 (1974)

    Article  ADS  Google Scholar 

  44. K. Ziegler, Phys. Rev. B 78, 125401 (2008)

    Article  ADS  Google Scholar 

  45. A. Sinner, K. Ziegler, Phys. Rev. B 86, 155450 (2012)

    Article  ADS  Google Scholar 

  46. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publising, 1976)

  47. A. Sinner, K. Ziegler, Phys. Rev. B 90, 174207 (2014)

    Article  ADS  Google Scholar 

  48. M. Trushin, J. Schliemann, Europhys. Lett. 83, 17001 (2008)

    Article  ADS  Google Scholar 

  49. I.M. Lifshits, S.A. Gredeskul, L.A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988)

  50. S. Villain-Guillot, G. Jug, K. Ziegler, Ann. Phys. 9, 27 (2000)

    Article  Google Scholar 

  51. N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ziegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegler, K. Quantum transport in 3D Weyl semimetals: Is there a metal-insulator transition?. Eur. Phys. J. B 89, 268 (2016). https://doi.org/10.1140/epjb/e2016-70454-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70454-2

Keywords

Navigation