Skip to main content
Log in

A multi-orbital iterated perturbation theory for model Hamiltonians and real material-specific calculations of correlated systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The dynamical mean field theory (DMFT) has emerged as one of the most important frameworks for theoretical investigations of strongly correlated lattice models and real material systems. Within DMFT, a lattice model can be mapped onto the problem of a magnetic impurity embedded in a self-consistently determined bath. The solution of this impurity problem is the most challenging step in this framework. The available numerically exact methods such as quantum Monte Carlo, numerical renormalization group or exact diagonalization are naturally unbiased and accurate, but are computationally expensive. Thus, approximate methods, based e.g. on diagrammatic perturbation theory have gained substantial importance. Although such methods are not always reliable in various parameter regimes such as in the proximity of phase transitions or for strong coupling, the advantages they offer, in terms of being computationally inexpensive, with real frequency output at zero and finite temperatures, compensate for their deficiencies and offer a quick, qualitative analysis of the system behavior. In this work, we have developed such a method, that can be classified as a multi-orbital iterated perturbation theory (MO-IPT) to study N-fold degenerate and non degenerate Anderson impurity models. As applications of the solver, we have embedded the MO-IPT within DMFT and explored lattice models like the single orbital Hubbard model, covalent band insulator and the multi-orbital Hubbard model for density-density type interactions in different parameter regimes. The Hund’s coupling effects in case of multiple orbitals is also studied. The limitations and quality of results are gauged through extensive comparison with data from the numerically exact continuous time quantum Monte Carlo method (CTQMC). In the case of the single orbital Hubbard model, covalent band insulators and non degenerate multi-orbital Hubbard models, we obtained an excellent agreement between the Matsubara self-energies of MO-IPT and CTQMC. But for the degenerate multi-orbital Hubbard model, we observe that the agreement with CTQMC results gets better as we move away from particle-hole symmetry. We have also integrated MO-IPT+DMFT with density functional theory based electronic structure methods to study real material systems. As a test case, we have studied the classic, strongly correlated electronic material, SrVO3. A comparison of density of states and photo emission spectrum (PES) with results obtained from different impurity solvers and experiments yields good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Gull, Ph.D. thesis, ETH Zürich, 2008

  3. M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  5. T. Pruschke, R. Bulla, Eur. Phys. J. B 44, 217 (2005)

    Article  ADS  Google Scholar 

  6. M. Caffarel, W. Krauth, Phys. Rev. Lett. 72, 1545 (1994)

    Article  ADS  Google Scholar 

  7. D.J. García, K. Hallberg, M.J. Rozenberg, Phys. Rev. Lett. 93, 246403 (2004)

    Article  ADS  Google Scholar 

  8. A. Rüegg, E. Gull, G.A. Fiete, A.J. Millis, Phys. Rev. B 87, 075124 (2013)

    Article  ADS  Google Scholar 

  9. T.A. Costi, J. Kroha, P. Wölfle, Phys. Rev. B 53, 1850 (1996)

    Article  ADS  Google Scholar 

  10. K. Haule, S. Kirchner, J. Kroha, P. Wölfle, Phys. Rev. B 64, 155111 (2001)

    Article  ADS  Google Scholar 

  11. K. Morita, H. Maebashi, K. Miyake, Physica B 312-313, 547 (2002)

    Article  ADS  Google Scholar 

  12. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  13. V. Drchal, V. Janiš, J. Kudrnovský, V.S. Oudovenko, X. Dai, K. Haule, G. Kotliar, J. Phys.: Condens. Matter 17, 61 (2005)

    ADS  Google Scholar 

  14. D.E. Logan, M.P. Eastwood, M.A. Tusch, J. Phys.: Condens. Matter 10, 2673 (1998)

    ADS  Google Scholar 

  15. M.T. Glossop, D.E. Logan, J. Phys.: Condens. Matter 14, 6737 (2002)

    ADS  Google Scholar 

  16. M.R. Galpin, A.B. Gilbert, D.E. Logan, J. Phys.: Condens. Matter 21, 375602 (2009)

    Google Scholar 

  17. P. Kumar, Ph.D. thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, 2013

  18. A. Martín-Rodero, E. Louis, F. Flores, C. Tejedor, Phys. Rev. B 33, 1814 (1986)

    Article  ADS  Google Scholar 

  19. K. Yosida, K. Yamada, Prog. Theor. Phys. Suppl. 46, 244 (1970)

    Article  ADS  Google Scholar 

  20. A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)

    Article  ADS  Google Scholar 

  21. H. Kajueter, Ph.D. thesis, Rutgers University, New Brunswick (1996)

  22. A. Martín-Rodero, F. Flores, M. Baldo, R. Pucci, Solid State Commun. 44, 911 (1982)

    Article  ADS  Google Scholar 

  23. E. Müller-Hartmann, Zeit. Phys. B 76, 211 (1989)

    Article  ADS  Google Scholar 

  24. K. Yamada, Prog. Theor. Phys. 53, 970 (1975)

    Article  ADS  Google Scholar 

  25. X.Y. Zhang, M.J. Rozenberg, G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993)

    Article  ADS  Google Scholar 

  26. T. Schäfer, G. Rohringer, O. Gunnarsson, S. Ciuchi, G. Sangiovanni, A. Toschi, Phys. Rev. Lett. 110, 246405 (2013)

    Article  ADS  Google Scholar 

  27. E. Kozik, M. Ferrero, A. Georges, Phys. Rev. Lett. 114, 156402 (2015)

    Article  ADS  Google Scholar 

  28. H. Kajueter, G. Kotliar, Phys. Rev. Lett. 77, 131 (1996)

    Article  ADS  Google Scholar 

  29. H. Kajueter, G. Kotliar, G. Moeller, Phys. Rev. B 53, 16214 (1996)

    Article  ADS  Google Scholar 

  30. M. Potthoff, T. Wegner, W. Nolting, Phys. Rev. B 55, 16132 (1997)

    Article  ADS  Google Scholar 

  31. T. Wegner, M. Potthoff, W. Nolting, Phys. Rev. B 57, 6211 (1998)

    Article  ADS  Google Scholar 

  32. L.F. Arsenault, P. Sémon, A.M.S. Tremblay, Phys. Rev. B 86, 085133 (2012)

    Article  ADS  Google Scholar 

  33. A.L. Yeyati, F. Flores, A. Martín-Rodero, Phys. Rev. Lett. 83, 600 (1999)

    Article  ADS  Google Scholar 

  34. A. Liebsch, Phys. Rev. B 70, 165103 (2004)

    Article  ADS  Google Scholar 

  35. M.S. Laad, L. Craco, E. Müller-Hartmann, Phys. Rev. Lett. 91, 156402 (2003)

    Article  ADS  Google Scholar 

  36. T. Fujiwara, S. Yamamoto, Y. Ishii, J. Phys. Soc. Jpn 72, 777 (2003)

    Article  ADS  Google Scholar 

  37. S.Y. Savrasov, V. Oudovenko, K. Haule, D. Villani, G. Kotliar, Phys. Rev. B 71, 115117 (2005)

    Article  ADS  Google Scholar 

  38. V. Oudovenko, K. Haule, S.Y. Savrasov, D. Villani, G. Kotliar, unpublished

  39. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  40. B. Bauer, L.D. Carr, H.G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S.V. Isakov, D. Koop, P.N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawowski, J.D. Picon, L. Pollet, E. Santos, V.W. Scarola, U. Schollwck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M.L. Wall, P. Werner, S. Wessel, J. Stat. Mech. 2011, P05001 (2011)

    Google Scholar 

  41. M. Sentef, J. Kuneš, P. Werner, A.P. Kampf, Phys. Rev. B 80, 155116 (2009)

    Article  ADS  Google Scholar 

  42. L. de’ Medici, J. Mravlje, A. Georges, Phys. Rev. Lett. 107, 256401 (2011)

    Article  ADS  Google Scholar 

  43. M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  44. H. Barman, Ph.D. thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, 2011

  45. A.L. Fetter, J.D. Walecka, Quantum Theory Of Many-Particle Systems (Dover Publications, 2003)

  46. H. Terletska, J. Vučičević, D. Tanasković, V. Dobrosavljević, Phys. Rev. Lett. 107, 026401 (2011)

    Article  ADS  Google Scholar 

  47. R. Bulla, Phys. Rev. Lett. 83, 136 (1999)

    Article  ADS  Google Scholar 

  48. R. Bulla, T.A. Costi, D. Vollhardt, Phys. Rev. B 64, 045103 (2001)

    Article  ADS  Google Scholar 

  49. K. Inaba, A. Koga, S.i. Suga, N. Kawakami, Phys. Rev. B 72, 085112 (2005)

    Article  ADS  Google Scholar 

  50. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  51. P. Zhang, P. Reis, K.M. Tam, M. Jarrell, J. Moreno, F. Assaad, A.K. McMahan, Phys. Rev. B 87, 121102 (2013)

    Article  ADS  Google Scholar 

  52. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  53. J. Kuneš, V.I. Anisimov, Phys. Rev. B 78, 033109 (2008)

    Article  ADS  Google Scholar 

  54. V. Jaccarino, G.K. Wertheim, J.H. Wernick, L.R. Walker, S. Arajs, Phys. Rev. 160, 476 (1967)

    Article  ADS  Google Scholar 

  55. C. Petrovic, Y. Lee, T. Vogt, N.D. Lazarov, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 72, 045103 (2005)

    Article  ADS  Google Scholar 

  56. A. Garg, H.R. Krishnamurthy, M. Randeria, Phys. Rev. Lett. 97, 046403 (2006)

    Article  ADS  Google Scholar 

  57. A.J. Kim, M.Y. Choi, G.S. Jeon, Phys. Rev. B 89, 165117 (2014)

    Article  ADS  Google Scholar 

  58. L. Tsui, H.C. Jiang, Y.M. Lu, D.H. Lee, Nucl. Phys. B 896, 330 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Amaricci, J.C. Budich, M. Capone, B. Trauzettel, G. Sangiovanni, Phys. Rev. Lett. 114, 185701 (2015)

    Article  ADS  Google Scholar 

  60. V.I. Anisimov, I.A. Nekrasov, D.E. Kondakov, T.M. Rice, M. Sigrist, Eur. Phys. J. B 25, 191 (2002)

    ADS  Google Scholar 

  61. Th. Pruschke, R. Bulla, Eur. Phys. J. B 44, 217 (2005)

    Article  ADS  Google Scholar 

  62. A. Koga, N. Kawakami, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 92, 216402 (2004)

    Article  ADS  Google Scholar 

  63. M. Ferrero, F. Becca, M. Fabrizio, M. Capone, Phys. Rev. B 72, 205126 (2005)

    Article  ADS  Google Scholar 

  64. A. Liebsch, Phys. Rev. Lett. 95, 116402 (2005)

    Article  ADS  Google Scholar 

  65. R. Arita, K. Held, Phys. Rev. B 72, 201102 (2005)

    Article  ADS  Google Scholar 

  66. A.E. Antipov, I.S. Krivenko, V.I. Anisimov, A.I. Lichtenstein, A.N. Rubtsov, Phys. Rev. B 86, 155107 (2012)

    Article  ADS  Google Scholar 

  67. S. Biermann, L. de’ Medici, A. Georges, Phys. Rev. Lett. 95, 206401 (2005)

    Article  ADS  Google Scholar 

  68. L. de’ Medici, Phys. Rev. B 83, 205112 (2011)

    Article  ADS  Google Scholar 

  69. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  70. P. Werner, A.J. Millis, Phys. Rev. Lett. 99, 126405 (2007)

    Article  ADS  Google Scholar 

  71. E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, O.K. Andersen, Phys. Rev. Lett. 92, 176403 (2004)

    Article  ADS  Google Scholar 

  72. E. Pavarini, A. Yamasaki, J. Nuss, O.K. Andersen, New J. Phys. 7, 188 (2005)

    Article  ADS  Google Scholar 

  73. A.I. Poteryaev, M. Ferrero, A. Georges, O. Parcollet, Phys. Rev. B 78, 045115 (2008)

    Article  ADS  Google Scholar 

  74. N. Parragh, G. Sangiovanni, P. Hansmann, S. Hummel, K. Held, A. Toschi, Phys. Rev. B 88, 195116 (2013)

    Article  ADS  Google Scholar 

  75. K. Held, Adv. Phys. 56, 829 (2007)

    Article  ADS  Google Scholar 

  76. O. Andersen, A. Liechtenstein, O. Jepsen, F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995)

    Article  ADS  Google Scholar 

  77. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  78. H.T. Dang, X. Ai, A.J. Millis, C.A. Marianetti, Phys. Rev. B 90, 125114 (2014)

    Article  ADS  Google Scholar 

  79. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, Computer Code WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001)

  80. M. Rey, P. Dehaudt, J. Joubert, B. Lambert-Andron, M. Cyrot, F. Cyrot-Lackmann, J. Solid State Chem. 86, 101 (1990)

    Article  ADS  Google Scholar 

  81. G. Trimarchi, I. Leonov, N. Binggeli, D. Korotin, V.I. Anisimov, J. Phys.: Condens. Matter 20, 135227 (2008)

    ADS  Google Scholar 

  82. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  83. J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikedaa, K. Held, Comput. Phys. Commun. 181, 1888 (2010)

    Article  ADS  Google Scholar 

  84. A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 178, 685 (2008)

    Article  ADS  Google Scholar 

  85. H. Ishida, D. Wortmann, A. Liebsch, Phys. Rev. B 73, 245421 (2006)

    Article  ADS  Google Scholar 

  86. I.A. Nekrasov, G. Keller, D.E. Kondakov, A.V. Kozhevnikov, T. Pruschke, K. Held, D. Vollhardt, V.I. Anisimov, Phys. Rev. B 72, 155106 (2005)

    Article  ADS  Google Scholar 

  87. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  88. M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994)

    Article  ADS  Google Scholar 

  89. A.I. Lichtenstein, M.I. Katsnelson, G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001)

    Article  ADS  Google Scholar 

  90. J. Braun, J. Minár, H. Ebert, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. Lett. 97, 227601 (2006)

    Article  ADS  Google Scholar 

  91. B. Amadon, F. Lechermann, A. Georges, F. Jollet, T.O. Wehling, A.I. Lichtenstein, Phys. Rev. B 77, 205112 (2008)

    Article  ADS  Google Scholar 

  92. F. Aryasetiawan, K. Karlsson, O. Jepsen, U. Schönberger, Phys. Rev. B 74, 125106 (2006)

    Article  ADS  Google Scholar 

  93. C. Taranto, M. Kaltak, N. Parragh, G. Sangiovanni, G. Kresse, A. Toschi, K. Held, Phys. Rev. B 88, 165119 (2013)

    Article  ADS  Google Scholar 

  94. A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki, S. Uchida, K. Takegahara, H. Harima, Y. Saitoh, I. Nekrasov, G. Keller, D. Kondakov, A. Kozhevnikov, T. Pruschke, K. Held, D. Vollhardt, V. Anisimov, Phys. Rev. Lett. 93, 156402 (2004)

    Article  ADS  Google Scholar 

  95. O. Miura, T. Fujiwara, Phys. Rev. B 77, 195124 (2008)

    Article  ADS  Google Scholar 

  96. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  97. H. H. Hafermann, P. Werner, E. Gull, Comput. Phys. Commun. 184, 1280 (2013)

    Article  ADS  Google Scholar 

  98. P. Werner, A. Comanac, L. de’Medici, M. Troyer, A.J. Millis, Phys. Rev. Lett. 97, 076405 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Vidhyadhiraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasari, N., Mondal, W., Zhang, P. et al. A multi-orbital iterated perturbation theory for model Hamiltonians and real material-specific calculations of correlated systems. Eur. Phys. J. B 89, 202 (2016). https://doi.org/10.1140/epjb/e2016-70133-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70133-4

Keywords

Navigation