Skip to main content
Log in

Spin splitting at the Fermi level in carbon nanotubes in the absence of a magnetic field

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, motivated by the possibility of experimental realization, we study the low-energy electronic states of a rotating carbon nanotube within a continuum model. An effective Dirac equation in the rotating reference frame is derived and exact analytical solutions for the eigenfunctions and energy spectrum are obtained. A Zeeman-like splitting results from the coupling of rotation to total angular momentum and the previously known static results are obtained in the no rotation limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. R. Saito et al., in Physical properties of carbon nanotubes (World Scientific, 1998), Vol. 4

  3. P. Král, H.R. Sadeghpour, Phys. Rev. B 65, 161401 (2002)

    Article  ADS  Google Scholar 

  4. J. Servantie, P. Gaspard, Phys. Rev. Lett. 97, 186106 (2006)

    Article  ADS  Google Scholar 

  5. S. Zhang, W.K. Liu, R.S. Ruoff, Nano Lett. 4, 293 (2004)

    Article  ADS  Google Scholar 

  6. S. Narendar, S. Gopalakrishnan, Results in Physics 1, 17 (2011)

    Article  ADS  Google Scholar 

  7. Y. Aharonov, G. Carmi, Found. Phys. 3, 493 (1973)

    Article  ADS  Google Scholar 

  8. Y. Aharonov, G. Carmi, Found. Phys. 4, 75 (1974)

    Article  ADS  Google Scholar 

  9. J. Anandan, Phys. Rev. D 15, 1448 (1977)

    Article  ADS  Google Scholar 

  10. J. Brandao, F. Moraes, M.M. Cunha, J.R.F. Lima, C. Filgueiras, Results in Physics 5, 55 (2015)

    Article  ADS  Google Scholar 

  11. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. J.Q. Shen, S. He, F. Zhuang, Eur. Phys. J. D 33, 35 (2005)

    Article  ADS  Google Scholar 

  13. J.R.F. Lima, J. Brandão, M.M. Cunha, F. Moraes, Eur. Phys. J. D 68, 94 (2014)

    Article  ADS  Google Scholar 

  14. J.R.F. Lima, F. Moraes, Eur. Phys. J. B 88, 63 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  15. B.L. Johnson, Am. J. Phys. 68, 649 (2000)

    Article  ADS  Google Scholar 

  16. Q. Liang, O.K.C. Tsui, Y. Xu, H. Li, X. Xiao, Phys. Rev. Lett. 90, 146102 (2003)

    Article  ADS  Google Scholar 

  17. C. Filgueiras, J. Brandao, F. Moraes, Europhys. Lett. 110, 27003 (2015)

    Article  ADS  Google Scholar 

  18. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  MATH  ADS  Google Scholar 

  19. D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)

    Article  ADS  Google Scholar 

  20. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Phys. Rev. B 66, 035412 (2002)

    Article  ADS  Google Scholar 

  21. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  22. J.-C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 677 (2007)

    Article  ADS  Google Scholar 

  23. L. Landau, E. Lifshitz, Course of Theoretical Physics (Butterworth-Heinemann, 1976)

  24. M. Matsuo, J. Ieda, E. Saitoh, S. Maekawa, Phys. Rev. B 84, 104410 (2011)

    Article  ADS  Google Scholar 

  25. F.W. Hehl, W.-T. Ni, Phys. Rev. D 42, 2045 (1990)

    Article  ADS  Google Scholar 

  26. B. Mashhoon, Phys. Rev. Lett. 61, 2639 (1988)

    Article  ADS  Google Scholar 

  27. J. González, F. Guinea, J. Herrero, Phys. Rev. B 79, 165434 (2009)

    Article  ADS  Google Scholar 

  28. L. Chico, M.P. López-Sancho, M.C. Muñoz, Phys. Rev. Lett. 93, 176402 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio M. Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, M.M., Brandão, J., Lima, J.R.F. et al. Spin splitting at the Fermi level in carbon nanotubes in the absence of a magnetic field. Eur. Phys. J. B 88, 288 (2015). https://doi.org/10.1140/epjb/e2015-60572-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60572-8

Keywords

Navigation