Skip to main content
Log in

Coherence dynamics of spin systems in critical environment with topological characterization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The coherence dynamics of the central systems are investigated in the spin-chain environment with topological characterization. For the single- and two-spin coherence, their critical behaviors can detect the topological quantum phase transitions (TQPTs) in weaker coupling regions. Their noncritical behaviors show periodic oscillations or keep constant. For the quantum coherence of a symmetric W state, the bipartite coherence is dominant due to its polygamy. The critical behaviors of global coherence (\(\textrm{QC}_{\mathrm{a:bc}}\) and \(\textrm{QC}_{\mathrm{b:c}}\)) and multipartite monogamy can also detect the TQPTs. In the strong coupling regions (\(g_{a(b,c)} \gg 1\)), the coherence dynamics of single-spin, two-spin, and bipartite block of three-spin system can be characterized by Gaussian envelope, but the envelope line of three-spin coherence can be only described by negative logarithmic function. Finally, the resistance to the topological spin-chain environment becomes stronger from the single- to three-spin coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

    Article  ADS  Google Scholar 

  2. Gyongyosi, L., Imre, S.: Optimizing high-efficiency quantum memory with quantum machine learning for near-term quantum devices. Sci. Rep. 10, 135 (2020)

    Article  ADS  Google Scholar 

  3. Bernsteinl, D.J., Lange, T.: Post-quantum cryptography. Nature 549, 188–194 (2017)

    Article  ADS  Google Scholar 

  4. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys. 22, 063017 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  5. Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  6. Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)

    Article  ADS  Google Scholar 

  7. Liu, Z.W., Bu, K.F., Takagi, R.: One-shot operational quantum resource theory. Phys. Rev. Lett. 123, 020401 (2019)

    Article  ADS  Google Scholar 

  8. Wu, K.D., Streltsov, A., Regula, B., Xiang, G.Y., Li, C.F., Guo, G.C.: Experimental progress on quantum coherence: detection, quantification, and manipulation. Adv. Quantum Technol. 4, 2100040 (2021)

    Article  Google Scholar 

  9. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  10. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  11. Streltsov, A., Rana, S., Boes, P., Eisert, J.: Structure of the resource theory of quantum coherence. Phys. Rev. Lett. 119, 140402 (2017)

    Article  ADS  Google Scholar 

  12. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  13. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  14. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  15. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ma, Z.H., Cui, J., Cao, Z., Fei, S.M., Vedral, V., Byrnes, T., Radhakrishnan, C.: Operational advantage of basis-independent quantum coherence. Europhys. Lett. 125, 50005 (2019)

    Article  ADS  Google Scholar 

  17. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)

    Article  ADS  Google Scholar 

  18. Radhakrishnan, C., Ding, Z., Shi, F.Z., Du, J.F., Byrnes, T.: Basis-independent quantum coherence and its distribution. Ann. Phys. 409, 167906 (2019)

    Article  MathSciNet  Google Scholar 

  19. Wu, K.D., Theurer, T., Xiang, G.Y., Li, C.F., Guo, G.C., Plenio, M.B., Streltsov, A.: Quantum coherence and state conversion: theory and experiment. npj Quantum Inf. 6, 22 (2020)

    Article  ADS  Google Scholar 

  20. Yuan, Y., Hou, Z.B., Tang, J.F., Streltsov, A., Xiang, G.Y., Li, C.F., Guo, G.C.: Direct estimation of quantum coherence by collective measurements. npj Quantum Inf. 6, 46 (2020)

    Article  ADS  Google Scholar 

  21. Ding, Z., Liu, R., Radhakrishnan, C., Ma, W.C., Peng, X.H., Wang, Y., Byrnes, T., Shi, F.Z., Du, J.F.: Experimental study of quantum coherence decomposition and trade-off relations in a tripartite system. npj Quantum Inf. 7, 145 (2021)

    Article  ADS  Google Scholar 

  22. Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  23. Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  24. Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)

    Article  ADS  Google Scholar 

  25. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  26. Mandal, S., Narozniak, M., Radhakrishnan, C., Jiao, Z.Q., Jin, X.M., Byrnes, T.: Characterizing coherence with quantum observables. Phys. Rev. Res. 2, 013157 (2020)

    Article  Google Scholar 

  27. Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017)

    Article  ADS  Google Scholar 

  28. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Quantum coherence of the Heisenberg spin models with Dzyaloshinsky–Moriya interactions. Sci. Rep. 7, 13865 (2017)

    Article  ADS  Google Scholar 

  29. Sha, Y.T., Wang, Y., Sun, Z.H., Hou, X.W.: Thermal quantum coherence and correlation in the extended XY spin chain. Ann. Phys. 392, 229 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  30. Ye, B.L., Li, B., Wang, Z.X., Li-Jost, X.Q., Fei, S.M.: Quantum Fisher information and coherence in one-dimensional XY spin models with Dzyaloshinsky–Moriya interactions. Sci. China Phys. Mech. Astron. 61, 110312 (2018)

    Article  ADS  Google Scholar 

  31. You, W.L., Wang, Y.M., Yi, T.C., Zhang, C.J., Olés, A.M.: Quantum coherence in a compass chain under an alternating magnetic field. Phys. Rev. B 97, 224420 (2018)

    Article  ADS  Google Scholar 

  32. Yi, T.C., You, W.L., Wu, N., Olés, A.M.: Criticality and factorization in the Heisenberg chain with Dzyaloshinsky–Moriya interaction. Phys. Rev. B 100, 024423 (2019)

    Article  ADS  Google Scholar 

  33. Hu, M.L., Gao, Y.Y., Fan, H.: Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A 101, 032305 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  34. Yin, S.Y., Song, J., Liu, S.T., Wang, Y.Y., Li, L., Sun, W.J.: Basis-independent quantum coherence and its distribution in spin chains with three-site interaction. Phys. A 597, 127239 (2022)

    Article  Google Scholar 

  35. Qin, M., Li, Y.B., Bai, Z., Wang, X.: Quantum coherence and its distribution in a two-dimensional Heisenberg XY model. Phys. A 600, 127472 (2022)

    Article  MathSciNet  Google Scholar 

  36. Huang, Z.M., Situ, H.Z.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  37. Yin, S.Y., Song, J., Xu, X.X., Zhang, Y.J., Liu, S.T.: Quantum coherence dynamics of three-qubit states in XY spin-chain environment. Quantum Inf. Process. 17, 296 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  38. Radhakrishnan, C., Lü, Z.G., Jing, J., Byrnes, T.: Dynamics of quantum coherence in a spin-star system: bipartite initial state and coherence distribution. Phys. Rev. A 100, 042333 (2019)

    Article  ADS  Google Scholar 

  39. Yin, S.Y., Song, J., Liu, S.T., Luan, H.L.: Markovian and non-Markovian dynamics of quantum coherence in the extended XX chain. Phys. Rev. A 106, 032220 (2022)

    Article  ADS  Google Scholar 

  40. Radhakrishnan, C., Chen, P.W., Jambulingam, S., Byrnes, T., Ali, M.M.: Time dynamics of quantum coherence and monogamy in a non-Markovian environment. Sci. Rep. 9, 2363 (2019)

    Article  ADS  Google Scholar 

  41. Zeng, H.S., Cao, H.M.: Distribution and evolution of quantum coherence for open multi-qubit systems in non-inertial frames. Ann. Phys. 533, 2000606 (2021)

    Article  MathSciNet  Google Scholar 

  42. Jafari, R., Akbari, A.: Dynamics of quantum coherence and quantum Fisher information after a sudden quench. Phys. Rev. A 101, 062105 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  43. Cao, H., Radhakrishnan, C., Su, M., Ali, M.M., Zhang, C., Huang, Y.F., Byrnes, T., Li, C.F., Guo, G.C.: Fragility of quantum correlations and coherence in a multipartite photonic system. Phys. Rev. A 102, 012403 (2020)

    Article  ADS  Google Scholar 

  44. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  45. Yuan, Z.G., Zhang, P., Li, S.S.: Loschmidt echo and Berry phase of a quantum system coupled to an XY spin chain: proximity to a quantum phase transition. Phys. Rev. A 75, 012102 (2007)

    Article  ADS  Google Scholar 

  46. Yuan, Z.G., Zhang, P., Li, S.S.: Disentanglement of two qubits coupled to an XY spin chain: role of quantum phase transition. Phys. Rev. A 76, 042118 (2007)

    Article  ADS  Google Scholar 

  47. Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  48. Malvezzi, A.L., Karpat, G., Cakmak, B., Fanchini, F.F., Debarba, T., Vianna, R.O.: Quantum correlations and coherence in spin-1 Heisenberg chains. Phys. Rev. B 93, 184428 (2016)

    Article  ADS  Google Scholar 

  49. Li, Y.C., Lin, H.Q.: Quantum coherence and quantum phase transitions. Sci. Rep. 6, 26365 (2016)

    Article  ADS  Google Scholar 

  50. Mahmoudi, M., Mahdavifar, S., Zadeh, T.M., Soltani, M.R.: Non-Markovian dynamics in the extended cluster spin-1/2 XX chain. Phys. Rev. A 95, 012336 (2017)

    Article  ADS  Google Scholar 

  51. Hu, M.L., Hu, X.Y., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)

    MathSciNet  ADS  Google Scholar 

  52. Hu, M.L., Fang, F., Fan, H.: Finite-size scaling of coherence and steered coherence in the Lipkin–Meshkov–Glick model. Phys. Rev. A 104, 062416 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  53. Mao, R., Dai, Y.W., Cho, S.Y., Zhou, H.Q.: Quantum coherence and spin nematic to nematic quantum phase transitions in biquadratic spin-1 and spin-2 XY chains with rhombic single-ion anisotropy. Phys. Rev. B 103, 014446 (2021)

    Article  ADS  Google Scholar 

  54. Zhao, Z., Yi, T.C., Xue, M., You, W.L.: Characterizing quantum criticality and steered coherence in the XY-Gamma chain. Phys. Rev. A 105, 063306 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  55. Liu, X.Y., Hu, M.L.: Average quantum coherence and its use in probing quantum phase transitions. Phys. A 609, 128308 (2023)

    Article  MathSciNet  Google Scholar 

  56. Mahmoudi, M.: The effects of Dzyaloshinskii–Moriya interaction on entanglement dynamics of a spin chain in a non-Markovian regime. Phys. A 545, 123707 (2020)

    Article  Google Scholar 

  57. Zhang, G., Song, Z.: Topological characterization of extended quantum Ising models. Phys. Rev. Lett. 115, 177204 (2015)

    Article  ADS  Google Scholar 

  58. Farajollahpour, T., Jafari, S.A.: Topological phase transition of the anisotropic XY model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 98, 085136 (2018)

    Article  ADS  Google Scholar 

  59. Zeng, B., Chen, X., Zhou, D.L., Wen, X.G.: Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems. Springer Science & Business Media, New York (2019)

    Book  Google Scholar 

  60. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  61. Pezzè, L., Gabbrielli, M., Lepori, L., Smerzi, A.: Multipartite entanglement in topological quantum phases. Phys. Rev. Lett. 119, 250401 (2017)

    Article  ADS  Google Scholar 

  62. Zhang, Y.R., Zeng, Y., Fan, H., You, J.Q., Nori, F.: Characterization of topological states via dual multipartite entanglement. Phys. Rev. Lett. 120, 250501 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  63. Randeep, N.C., Surendran, N.: Topological entanglement entropy of the three-dimensional Kitaev model. Phys. Rev. B 98, 125136 (2018)

    Article  ADS  Google Scholar 

  64. Cheng, W.W., Li, B., Gong, L.Y., Zhao, S.M.: Quantum speed limit and topological quantum phase transition in an extended XY model. Phys. A 597, 127242 (2022)

    Article  MathSciNet  Google Scholar 

  65. Yin, S.Y., Song, J., Liu, S.T.: Quantum Fisher information in quantum critical systems with topological characterization. Phys. Rev. B 100, 184417 (2019)

    Article  ADS  Google Scholar 

  66. Dong, L.Z., Bao, J., Guo, B., Sun, Z.Y.: Quantum nonlocality and topological quantum phase transitions in the extended Ising chain. J. Phys.: Condens. Matter 34, 425405 (2022)

    ADS  Google Scholar 

  67. Li, S.P., Sun, Z.H.: Local and intrinsic quantum coherence in critical systems. Phys. Rev. A 98, 022317 (2018)

    Article  ADS  Google Scholar 

  68. Chen, Q., Zhang, G.Q., Cheng, J.Q., Xu, J.B.: Topological quantum phase transitions in the 2-D Kitaev honeycomb model. Quantum Inf. Process. 18, 8 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  69. Yin, S.Y., Song, J., Liu, S.T., Guo, G.L.: Quantum coherence and topological quantum phase transitions in the extended XY chain. Phys. Lett. A 389, 127089 (2021)

    Article  MathSciNet  Google Scholar 

  70. Guo, J.L., Zhang, X.Z.: Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction. Sci. Rep. 6, 32634 (2016)

    Article  ADS  Google Scholar 

  71. Zhang, X.Z., Guo, J.L.: Quantum correlation and quantum phase transition in the one-dimensional extended Ising model. Quantum Inf. Process. 16, 223 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  72. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Heilongjiang Provincial Universities (Grant no. 2021-KYYWF-0188). We thank Dr. Jin-Liang Guo for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Hongliang Luan prepared Figs. 1–10 and wrote the original draft; Qiang Zhang and Jing Wen contributed to the development and fine-tuning of the algorithm, and performed substantial debugging and code optimization; Shaoying Yin supervised the project, provided strategic direction in algorithm development and testing, and conducted a thorough review and final approval of the manuscript prior to submission.

Corresponding author

Correspondence to Shaoying Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Coherence dynamics and TQPTs induced by the anisotropy parameters

Some references have reported that the topological phase transition points are \(\gamma _{c1}=(-\sqrt{5}+1)/2\) and \(\gamma _{c2}=(\sqrt{5}+1)/2\) as the anisotropy of the nearest-neighbor spins \(\gamma \) is the driving parameter, and \(\delta _{c1}\approx -1.2747\) and \(\delta _{c2} \approx 0.5604\) as the anisotropy of next-to-nearest-neighbor spins \(\delta \) is the driving parameter [64,65,66, 69]. Based on these results, we have displayed the coherence dynamics of the single-spin system as a function of \(\gamma \) and \(\delta \) in Fig. 9a and b, respectively. It is found that the single-spin coherence tends to undergo a rapid decay near each TQPT, but there is a surge at the critical point \(\delta _{c2}\). The more detailed information can see Fig. 9c and d, which display the single-spin coherence as a function of the parameters \(\gamma \) and \(\delta \) at \(t=10\). One can observe that the quantum coherence is sensitive to the parameters \(\gamma \) and \(\delta \). Although the quantum coherence declines sharply around the TQPTs, it always increases sharply at the phase transition points, especially at the critical point \(\delta _{c2}\). This situation is similar to single-spin and two-spin coherence at the critical point \(\alpha _{c3}=(\sqrt{5}-1)/2\), and Cheng et al. also proved that non-Markovianity decreases to zero on each side of the critical point \(\left( \delta _{c2}\right) \) and exhibits a local maximum on the point exactly in their Fig. 5b [64]. We all know that the non-Markovianity can describe the memory effects and the backflow of information from the surrounding environment. Hence, we can understand that the backflow of coherence information from the spin-chain environment prevents the decay of single-spin coherence.

Coherence distribution of a tripartite system

We briefly illustrate the coherence distribution of a tripartite system in this section [21]. A geometric picture of different coherences is displayed in Fig. 10, and the distances between any two states represent the different coherences. It is found that the three-spin coherence, also known as absolute coherence \({\textrm{QC}}_{\textrm{A}}\), can be decomposed in two ways: one is the global coherence \({\textrm{QC}}_{\textrm{G}}\) and local coherence \({\textrm{QC}}_{\textrm{L}}\), the other is \({\textrm{QC}}_{\mathrm{a:bc}}\) and \(\textrm{QC}_{\textrm{A}}^{{\mathrm{a:bc}}}\). Here, \(\textrm{QC}_{a:bc}\) describes the coherence between qubit a and the bipartite block bc. \({\textrm{QC}}_{\mathrm {b:c}}\) measures the coherence in the bipartite block bc. They both constitute the coherence distribution of \({\textrm{QC}}_{\textrm{G}}\). \({\textrm{QC}}_{\textrm{A}}^{\mathrm {a:bc}}\) evaluates the coherence between the \(\rho _a\otimes \rho _{bc}\) and \([\pi \left( \rho \right) ]_d\), and it can be decomposed into \({\textrm{QC}}_{\mathrm {b:c}}\) and \({\textrm{QC}}_{\textrm{L}}\). Based on the geometric diagram of the coherence distribution in Fig. 10, there are four triangles, and each triangle satisfies the trade-off relation. They can be expressed as

$$\begin{aligned}{} & {} {\textrm{QC}}_{\textrm{A}} \le {\textrm{QC}}_{{\textrm{G}}} + {\textrm{QC}}_{\textrm{L}}, \ {\textrm{QC}}_{\textrm{A}} \le {\textrm{QC}}_{{\mathrm {a:bc}}}+{\textrm{QC}}_{\textrm{A}}^{{\mathrm {a:bc}}}, \nonumber \\{} & {} {\textrm{QC}}_{{\textrm{G}}} \le {\textrm{QC}}_{{\mathrm {a:bc}}} + {\textrm{QC}}_{\mathrm {b:c}}, \ {\textrm{QC}}_{\textrm{A}}^{{\mathrm {a:bc}}} \le {\textrm{QC}}_{\mathrm {b:c}} + {\textrm{QC}}_{\textrm{L}}. \end{aligned}$$
(B1)

In our work, there is no local coherence \({\textrm{QC}}_{\textrm{L}}\) for the symmetric W state due to the \(\pi \left( \rho \right) =[\pi \left( \rho \right) ]_d\), and the absolute coherence \({\textrm{QC}}_{\textrm{A}}\) is equal to the global coherence \({\textrm{QC}}_{{\textrm{G}}}\). Thus, we have investigated the physical properties of absolute coherence \({\textrm{QC}}_{\textrm{A}}\) and its coherence distribution (\({\textrm{QC}}_{{\mathrm {a:bc}}}\) and \({\textrm{QC}}_{\mathrm {b:c}}\)) in the topologically critical environment. By the way, the geometric diagram in Fig. 10 is not the only coherence distribution. For example, the three-spin coherence can also be decomposed into the \(\textrm{QC}_{ab:c}\) and \(\textrm{QC}_{a:b}\) or \(\textrm{QC}_{ac:b}\) and \(\textrm{QC}_{a:c}\).

Fig. 10
figure 10

A schematic diagram of coherence distribution for a tripartite system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, H., Zhang, Q., Wen, J. et al. Coherence dynamics of spin systems in critical environment with topological characterization. Quantum Inf Process 23, 163 (2024). https://doi.org/10.1007/s11128-024-04372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04372-3

Keywords

Navigation