Skip to main content
Log in

Thermoelectrics from silicon nanoparticles: the influence of native oxide

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thermoelectric materials were synthesized by current-assisted sintering of doped silicon nanoparticles produced in a microwave-plasma reactor. Due to their affinity to oxygen, the nanoparticles start to oxidize when handled in air and even a thin surface layer of native silicon oxide leads to a significant increase in the oxide volume ratio. This results in a considerable incorporation of oxygen into the sintered pellets, thus affecting the thermoelectric performance. To investigate the necessity of inert handling of the raw materials, the thermoelectric transport properties of sintered nanocrystalline silicon samples were characterized with respect to their oxygen content. An innovative method allowing a quantitative silicon oxide analysis by means of electron microscopy was applied: the contrast between areas of high and low electrical conductivity was attributed to the silicon matrix and silicon oxide precipitates, respectively. Thermoelectric characterization revealed that both, electron mobility and thermal conductivity decrease with increasing silicon oxide content. A maximum figure of merit with zT = 0.45 at 950 °C was achieved for samples with a silicon oxide mass fraction of 9.5 and 21.4% while the sample with more than 25% of oxygen clearly indicates a negative impact of the oxygen on the electron mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, Adv. Funct. Mater. 19, 2445 (2009)

    Article  Google Scholar 

  2. G. Schierning, R. Theissmann, N. Stein, N. Petermann, A. Becker, M. Engenhorst, V. Kessler, M. Geller, A. Beckel, H. Wiggers, R. Schmechel, J. Appl. Phys. 110, 113515 (2011)

    Article  ADS  Google Scholar 

  3. N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, H. Wiggers, J. Phys. D 44, 174034 (2011)

    Article  ADS  Google Scholar 

  4. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009),

    Article  Google Scholar 

  5. P.I. Ravikovitch, A.V. Neimark, in Proceedings of the Characterization of Porous Solids VII, Aix-en-Provence, 2005, edited by P.L. Llewellyn et al. (Elsevier, Amsterdam, 2007)

  6. M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Phys. Rev. 133, A1143 (1964)

    Article  ADS  Google Scholar 

  7. M.A. Green, J. Appl. Phys. 67, 2944 (1990)

    Article  ADS  Google Scholar 

  8. B.A. Cook, J.L. Harringa, S.H. Han, C.B. Vining, J. Appl. Phys. 78, 5474 (1995)

    Article  ADS  Google Scholar 

  9. H.J. Goldsmid, J.W. Sharp, J. Electron. Mater. 28, 869 (1999)

    Article  ADS  Google Scholar 

  10. G.L. Pearson, J. Bardeen, Phys. Rev. 75, 865 (1949)

    Article  ADS  Google Scholar 

  11. C. Jacoboni, C. Canali, G. Ottaviani, A. Alberigi Quaranta, Solid-State Electron. 20, 77 (1977)

    Article  ADS  Google Scholar 

  12. I.N. Hulea, S. Fratini, H. Xie, C.L. Mulder, N.N. Iossad, G. Rastelli, S. Ciuchi, A.F. Morpurgo, Nat. Mater. 5, 982 (2006)

    Article  ADS  Google Scholar 

  13. D.M. Rowe, V.S. Shukla, N. Savvides, Nature 290, 765 (1981)

    Article  ADS  Google Scholar 

  14. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Nano Lett. 11, 2206 (2011)

    Article  ADS  Google Scholar 

  15. J. De Boor, D.S. Kim, X. Ao, D. Hagen, A. Cojocaru, H. Föll, V. Schmidt, Europhys. Lett. 96, 16001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Petermann.

Additional information

Contribution to the Topical Issue “Silicon and Silicon-related Materials for Thermoelectricity”, edited by Dario Narducci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petermann, N., Stötzel, J., Stein, N. et al. Thermoelectrics from silicon nanoparticles: the influence of native oxide. Eur. Phys. J. B 88, 163 (2015). https://doi.org/10.1140/epjb/e2015-50594-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50594-7

Keywords

Navigation