Skip to main content
Log in

Effective mean field approach to kinetic Monte Carlo simulations in limit cycle dynamics with reactive and diffusive rewiring

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The dynamics of stochastic nonlinear kinetic schemes is known to deviate from the mean field (MF) theory when restricted on low dimensional spatial supports. This failure has been attributed to (i) the influence of the support’s spatial extension which modifies the system’s dynamics and (ii) the influence of the noise. In the current study, we introduce effective parameters, which depend on the type of the support and which allow for an effective MF description. As working example the lattice limit cycle dynamics is used, restricted on a 2D square lattice with nearest neighbour interactions. We show that it is possible to describe the spatiotemporal average concentrations of the restricted dynamics using the MF model when the kinetic rates are replaced with their effective values. The same conclusion holds when reactive stochastic rewiring is introduced in the system via long distance coupling. Instead, when the stochastic coupling becomes diffusive the effective parameters no longer predict the steady state. This is attributed to the diffusion process which is an additional factor introduced into the dynamics and is not accounted for, in the kinetic MF scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P.J. Jansen, J.J. Lukkien, Catalysis Today 53, 259 (1999)

    Article  Google Scholar 

  2. M. Nagasaka, H. Kondoh, I. Nakai, T. Ohta, J. Chem. Phys. 126, 044704 (2007)

    Article  ADS  Google Scholar 

  3. N.V. Petrova, I.N. Yakovkin, Eur. Phys. J. B 58, 257 (2007)

    Article  ADS  Google Scholar 

  4. Y. De Decker, F. Baras, Eur. Phys. J. B 78, 173 (2010)

    Article  ADS  Google Scholar 

  5. L. Alvarez-Falcon, L. Vicente, Int. J. Quantum Chem. 112, 1803 (2012)

    Article  Google Scholar 

  6. A. Farkas, F. Hess, H. Over, J. Phys. Chem. C 116, 581 (2012)

    Article  Google Scholar 

  7. S.J. Alas, L. Vicente, Surf. Sci. 604, 957 (2010)

    Article  ADS  Google Scholar 

  8. R. Imbihl, G. Ertl, Chem. Rev. 95, 697 (1995)

    Article  Google Scholar 

  9. R. Imbihl, T. Fink, K. Krisher, J. Chem. Phys. 96, 6236 (1992)

    Article  ADS  Google Scholar 

  10. O. Kortluke, V.N. Kuzovkov, W. von Niessen, Phys. Rev. Lett. 81, 2164 (1998)

    Article  ADS  Google Scholar 

  11. V.P. Zhdanov, Catalysis Lett. 93, 135 (2004)

    Article  Google Scholar 

  12. R. Imbihl, Surf. Sci. 603, 1671 (2009)

    Article  ADS  Google Scholar 

  13. B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999)

    Article  ADS  Google Scholar 

  14. J.L. Deneubourg, A. Lioni, C. Detrain, Biol. Bull. 202, 262 (2002)

    Article  Google Scholar 

  15. N. Kouvaris, A. Provata, D. Kugiumtzis, Phys. Lett. A 374, 507 (2010)

    Article  ADS  MATH  Google Scholar 

  16. M. Kuperman, G. Abramson, Phys. Rev. Lett. 86, 2909 (2001)

    Article  ADS  Google Scholar 

  17. D.H. Zanette, M. Kuperman, Physica A 309, 445 (2002)

    Article  ADS  MATH  Google Scholar 

  18. U. Naether, E.B. Postnikov, I.M. Sokolov, Eur. Phys. J. B 65, 353 (2008)

    Article  ADS  Google Scholar 

  19. C.P. Ferreira, J.F. Fontanari, R.M.Z. dos Santos, Phys. Rev. E 64, 041903 (2001)

    Article  ADS  Google Scholar 

  20. R.S. Baghel, J. Dhar, R. Jain, Electron. J. Diff. Equations 21, 1 (2012)

    MathSciNet  Google Scholar 

  21. V.P. Zhdanov, Surf. Sci. 392, 185 (1997)

    Article  ADS  Google Scholar 

  22. V.P. Zhdanov, Langmuir 17, 1793 (2001)

    Article  Google Scholar 

  23. V. Kuzovkov, E. Kotomin, Rep. Prog. Phys. 51, 1479 (1988)

    Article  ADS  Google Scholar 

  24. J.P. Hovi, A.P.J. Jansen, R.M. Nieminen, Phys. Rev. E 55, 4170 (1997)

    Article  ADS  Google Scholar 

  25. E. Kotomin, V. Kuzovkov, Modern Aspects of Diffusion-Controlled Processes Cooperative Phenomena in Bimolecular Reactions (Elsevier Science B.V., Amsterdam, 1996), Vol. 34

  26. V. Kashcheyevs, V.N. Kuzovkov, Phys. Rev. E 63, 061107 (2001)

    Article  ADS  Google Scholar 

  27. A. Provata, G. Nicolis, F. Baras, J. Chem. Phys. 110, 8361 (1999)

    Article  ADS  Google Scholar 

  28. A. Efimov, A. Shabunin, A. Provata, Phys. Rev. E 78, 056201 (2008)

    Article  ADS  Google Scholar 

  29. A.V. Shabunin, F. Baras, A. Provata, Phys. Rev. E 66, 036219 (2002)

    Article  ADS  Google Scholar 

  30. A. Provata et al., Fluct. Noise Lett. 3, L241 (2003)

    Article  Google Scholar 

  31. G.A. Tsekouras, A. Provata, Eur. Phys. J. B 52, 107 (2006)

    Article  ADS  Google Scholar 

  32. J.-S. Wang, R.H. Swendsen, J. Stat. Phys. 106, 245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Provata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagakou, E., Boulougouris, G. & Provata, A. Effective mean field approach to kinetic Monte Carlo simulations in limit cycle dynamics with reactive and diffusive rewiring. Eur. Phys. J. B 86, 277 (2013). https://doi.org/10.1140/epjb/e2013-31112-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31112-7

Keywords

Navigation