Skip to main content
Log in

The rhythm of coupled metronomes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Spontaneous synchronization of an ensemble of metronomes placed on a freely rotating platform is studied experimentally and by computer simulations. A striking in-phase synchronization is observed when the metronomes’ beat frequencies are fixed above a critical limit. Increasing the number of metronomes placed on the disk leads to an observable decrease in the level of the emerging synchronization. A realistic model with experimentally determined parameters is considered in order to understand the observed results. The conditions favoring the emergence of synchronization are investigated. It is shown that the experimentally observed trends can be reproduced by assuming a finite spread in the metronomes’ natural frequencies. In the limit of large numbers of metronomes, we show that synchronization emerges only above a critical beat frequency value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, New York, 2003)

  2. S. Strogatz, Physica D 226, 181 (2000)

    MathSciNet  Google Scholar 

  3. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, Cambridge, 2002)

  4. C. Huygens, in Oeuvres Complètes de Christian Huygens, edited by M. Nijhoff (Societe Hollandaise des Sciences, The Hague, 1893), Vol. 5, p. 243 (a letter to his father, dated 26 Feb. 1665)

  5. M. Bennet, M.F. Schatz, H. Rockwood, K. Wiesenfeld, Proc. Roy. Soc. London A 458, 563 (2002)

    Article  Google Scholar 

  6. R. Dilao, Chaos 19, 023118 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Kumon, R. Washizaki, J. Sato, R.K.I. Mizumoto, Z. Iwai, in Proceedings of the 15th IFAC World Congress, Barcelona, 2002

  8. A.L. Fradkov, B. Andrievsky, Int. J. Non-linear Mech. 42, 895 (2007)

    Article  ADS  Google Scholar 

  9. K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bifur. Chaos 21, 2047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Physica A 388, 5013 (2009)

    Article  ADS  Google Scholar 

  11. J. Pantaleone, Am. J. Phys. 70, 992 (2002)

    Article  ADS  Google Scholar 

  12. B. van der Pol, Philos. Mag. 3, 64 (1927)

    Google Scholar 

  13. Y. Kuramoto, I. Nishikawa, J. Stat. Phys. 49, 569 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. H. Ulrichs, A. Mann, U. Parlitz, Chaos 19, 043120 (2009)

    Article  ADS  Google Scholar 

  15. M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Rep. 517, 1 (2012)

    Article  ADS  Google Scholar 

  16. Wikipedia, Metronom (2012 (accessed July 23, 2012)), https://en.wikipedia.org/wiki/Metronome

  17. Wikipedia, Minicom (2012 (accessed January 14, 2012)), https://en.wikipedia.org/wiki/Minicom

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Néda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boda, S., Néda, Z., Tyukodi, B. et al. The rhythm of coupled metronomes. Eur. Phys. J. B 86, 263 (2013). https://doi.org/10.1140/epjb/e2013-31065-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31065-9

Keywords

Navigation