Skip to main content

Dynamics of Fully Coupled Rotators with Unimodal and Bimodal Frequency Distribution

  • Chapter
  • First Online:
Control of Self-Organizing Nonlinear Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We analyze the synchronization transition of a globally coupled network of N phase oscillators with inertia (rotators) whose natural frequencies are unimodally or bimodally distributed. In the unimodal case, the system exhibits a discontinuous hysteretic transition from an incoherent to a partially synchronized (PS) state. For sufficiently large inertia, the system reveals the coexistence of a PS state and of a standing wave (SW) solution. In the bimodal case, the hysteretic synchronization transition involves several states. Namely, the system becomes coherent passing through traveling waves (TWs), SWs and finally arriving to a PS regime. The transition to the PS state from the SW occurs always at the same coupling, independently of the system size, while its value increases linearly with the inertia. On the other hand the critical coupling required to observe TWs and SWs increases with N suggesting that in the thermodynamic limit the transition from incoherence to PS will occur without any intermediate states. Finally a linear stability analysis reveals that the system is hysteretic not only at the level of macroscopic indicators, but also microscopically as verified by measuring the maximal Lyapunov exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Courier Dover Publications, Mineola, 2003)

    Google Scholar 

  2. H.A. Tanaka, A.J. Lichtenberg, S. Oishi, Phys. Rev. Lett. 78(11), 2104 (1997)

    Article  ADS  Google Scholar 

  3. H.A. Tanaka, A.J. Lichtenberg, S. Oishi, Phys. D: Nonlinear Phenom. 100(3), 279 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  4. B. Ermentrout, J. Math. Biol. 29(6), 571 (1991)

    Article  MathSciNet  Google Scholar 

  5. S.H. Strogatz, D.M. Abrams, A. McRobie, B. Eckhardt, E. Ott, Nature 438(7064), 43 (2005)

    Article  ADS  Google Scholar 

  6. M. Bennett, M.F. Schatz, H. Rockwood, K. Wiesenfeld, Proc. Math. Phys. Eng. Sci. 458, 563 (2002)

    Google Scholar 

  7. F. Salam, J.E. Marsden, P.P. Varaiya, IEEE Trans. Circ. Syst. 31(8), 673 (1984)

    Google Scholar 

  8. G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B 61(4), 485 (2008)

    Article  ADS  Google Scholar 

  9. M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109(6), 064101 (2012)

    Article  ADS  Google Scholar 

  10. F. Dörfler, M. Chertkov, F. Bullo, Proc. Nat. Acad. Sci. 110(6), 2005 (2013)

    Article  ADS  Google Scholar 

  11. T. Nishikawa, A.E. Motter, J. Phys. 17(1), 015012 (2015)

    MathSciNet  Google Scholar 

  12. B. Trees, V. Saranathan, D. Stroud, Phys. Rev. E 71(1), 016215 (2005)

    Article  ADS  Google Scholar 

  13. P. Ji, T.K.D. Peron, P.J. Menck, F.A. Rodrigues, J. Kurths, Phys. Rev. Lett. 110, 218701 (2013)

    Article  ADS  Google Scholar 

  14. S. Olmi, E.A. Martens, S. Thutupalli, A. Torcini, Phys. Rev. E 92(3), 030901 (2015)

    Article  ADS  Google Scholar 

  15. P. Jaros, Y. Maistrenko, T. Kapitaniak, Phys. Rev. E 91(2), 022907 (2015)

    Article  ADS  Google Scholar 

  16. D.J. Jörg, Chaos: an interdisciplinary. J. Nonlinear Sci. 25(5), 053106 (2015)

    Google Scholar 

  17. S. Olmi, A. Navas, S. Boccaletti, A. Torcini, Phys. Rev. E 90(4), 042905 (2014)

    Article  ADS  Google Scholar 

  18. J. Acebrón, L. Bonilla, R. Spigler, Phys. Rev. E 62(3), 3437 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. E.A. Martens, E. Barreto, S. Strogatz, E. Ott, P. So, T. Antonsen, Phys. Rev. E 79(2), 026204 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Acebrón, R. Spigler, Phys. Rev. Lett. 81(11), 2229 (1998)

    Article  ADS  Google Scholar 

  21. A. Winfree, The Geometry of Biological Time (Springer, New York, 1980)

    Book  MATH  Google Scholar 

  22. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15(1), 9 (1980)

    Article  ADS  Google Scholar 

  23. F. Ginelli, K.A. Takeuchi, H. Chaté, A. Politi, A. Torcini, Phys. Rev. E 84(6), 066211 (2011)

    Article  ADS  Google Scholar 

  24. S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Westview press, Boulder, 2014)

    Google Scholar 

  25. S. Gupta, A. Campa, S. Ruffo, Phys. Rev. E 89(2), 022123 (2014)

    Article  ADS  Google Scholar 

  26. J.D. Crawford, J. Stat. Phys. 74(5–6), 1047 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Pazó, E. Montbrió, Phys. Rev. E 80(4), 046215 (2009)

    Article  ADS  Google Scholar 

  28. C.U. Choe, T. Dahms, P. Hövel, E. Schöll, Phys. Rev. E 81(2), 025205 (2010)

    Article  ADS  Google Scholar 

  29. T. Dahms, J. Lehnert, E. Schöll, Phys. Rev. E 86(1), 016202 (2012)

    Article  ADS  Google Scholar 

  30. M.G. Rosenblum, A.S. Pikovsky, Phys. Rev. Lett. 92(11), 114102 (2004)

    Article  ADS  Google Scholar 

  31. G. Montaseri, M.J. Yazdanpanah, A. Pikovsky, M. Rosenblum, Chaos: an interdisciplinary. J. Nonlinear Sci. 23(3), 033122 (2013)

    MathSciNet  Google Scholar 

  32. A.L. Do, J. Höfener, T. Gross, New J. Phys. 14(11), 115022 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank E.A. Martens, D. Pazó, E. Montbrió, M. Wolfrum for useful discussions. We acknowledge partial financial support from the Italian Ministry of University and Research within the project CRISIS LAB PNR 2011-2013. This work is part of of the activity of the Marie Curie Initial Training Network ‘NETT’ project # 289146 financed by the European Commission. A.T. has also been supported by the A\(^*\)MIDEX grant (No. ANR-11-IDEX-0001-02) funded by the French Government “program Investissements d’Avenir”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Olmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olmi, S., Torcini, A. (2016). Dynamics of Fully Coupled Rotators with Unimodal and Bimodal Frequency Distribution. In: Schöll, E., Klapp, S., Hövel, P. (eds) Control of Self-Organizing Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-28028-8_2

Download citation

Publish with us

Policies and ethics