Skip to main content
Log in

Ferromagnetism in the asymmetric Hubbard model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The density matrix renormalization group and quantum Monte Carlo calculations are used to study ferromagnetism in the one- and two-dimensional asymmetric Hubbard model. The model is examined for a wide range of electron concentrations n, Coulomb interactions U and down-spin electron hopping integrals t changing from t  = 0 (the case of the Falicov-Kimball model) to t  = 1 (the case of the conventional Hubbard model). The critical value of the down-spin electron hopping integral t c below which the ferromagnetic state becomes stable is calculated numerically and the ground-state phase diagram of the model (in the t -U plane) is presented for physically the most interesting cases (n = 1 / 4,/ 2 and 3/4). It is shown that at fixed U the ferromagnetic state is stabilized with increasing concentration of holes (1 − n) in the system, and at fixed n the ferromagnetic state is generally stabilized with increasing U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. Roy. Soc. Lond. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  2. Y. Nagaoka, Phys. Rev. 147, 392 (1966)

    Article  ADS  Google Scholar 

  3. E. Müller-Hartmann, J. Low. Temp. Phys. 99, 342 (1995)

    Article  Google Scholar 

  4. M. Ulmke, Eur. Phys. J. B 1, 301 (1998)

    Article  ADS  Google Scholar 

  5. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Farkašovský, Phys. Rev. B 66, 012404 (2002)

    Article  ADS  Google Scholar 

  7. P. Pieri, Mod. Phys. Lett. B 10, 1277 (1996)

    Article  ADS  Google Scholar 

  8. M. Salerno, Z. Phys. B 99, 469 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  9. P. Pieri, Mod. Phys. Lett. B 101, 619 (1996)

    Google Scholar 

  10. A. Mielke, H. Tasaki, Commun. Math. Phys. 158, 341 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. P. Farkašovský, Phys. Rev. B 57, 14722 (1998)

    Article  ADS  Google Scholar 

  12. Density-Matrix Renormalization. Lecture Notes in Physics, edited by I. Peschel, X. Wang, M. Kaulke, K. Hallberg (Springer, Berlin, 1999), Vol. 528

  13. U. Schollwock, Rev. Mod. Phys. 77, 259 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. K.A. Hallberg, Adv. Phys. 55, 477 (2006)

    Article  ADS  Google Scholar 

  15. R. Lyzwa, Z. Domanski, Phys. Rev. B 50, 11381 (1994)

    Article  ADS  Google Scholar 

  16. Z. Domanski, R. Lyzwa, P. Erdos, J. Magn. Magn. Mater. 140, 1205 (1995)

    Article  ADS  Google Scholar 

  17. G. Fath, Z. Domanski, R. Lemanski, Phys. Rev. B 52, 13910 (1995)

    Article  ADS  Google Scholar 

  18. L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969)

    Article  ADS  Google Scholar 

  19. C.D. Batista, Phys. Rev. Lett. 89, 166403 (2002)

    Article  ADS  Google Scholar 

  20. C.D. Batista, J.E. Gubernatis, J. Bonca, H.Q. Lin, Phys. Rev. Lett. 92, 187601 (2004)

    Article  ADS  Google Scholar 

  21. W.G. Yin, W.N. Mei, Ch.G. Duan, H.Q. Lin, J.R. Hardy, Phys. Rev. B 68, 075111 (2003)

    Article  ADS  Google Scholar 

  22. A.M.C. Souza, C.A. Macedo, Physica 384, 196 (2006)

    Article  Google Scholar 

  23. Z.G. Wang, Y.G. Chen, S.J. Gu, Phys. Rev. B 75, 165111 (2007)

    Article  ADS  Google Scholar 

  24. M.A. Cazalilla, A.F. Ho, T. Giamarchi, Phys. Rev. Lett. 95, 226402 (2003)

    Article  ADS  Google Scholar 

  25. J. Silva-Valencia, R. Franco, M.S. Figueira, Physica 398, 427 (2007)

    Article  Google Scholar 

  26. S.J. Gu, R. Fan, H.Q. Lin, Phys. Rev. B 76, 125107 (2008)

    Article  ADS  Google Scholar 

  27. P. Farkašovský, Phys. Rev. B 77, 085110 (2008)

    Article  ADS  Google Scholar 

  28. Š. Gál, Mod. Phys. Lett. B 13, 515 (1999)

    Article  ADS  Google Scholar 

  29. J.C. Amadon, J.E. Hirsch, Phys. Rev. B 54, 6364 (1996)

    Article  ADS  Google Scholar 

  30. D. Ueltschi, J. Stat. Phys. 116, 681 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S. Sorella, S. Baroni, R. Car, M. Parinello, Europhys. Lett. 8, 663 (1989)

    Article  ADS  Google Scholar 

  32. E.Y. Loh, J.E. Gubernatis, in Modern Problems of Condensed Matter Physics, edited by W. Hanke, Y. Kopaev (North Holland, Amsterdam, 1992)

  33. M. Imada, Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, Singapore, 1993)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkašovský, P. Ferromagnetism in the asymmetric Hubbard model. Eur. Phys. J. B 85, 253 (2012). https://doi.org/10.1140/epjb/e2012-30306-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30306-9

Keywords

Navigation