Skip to main content
Log in

Transport across nanogaps using self-consistent boundary conditions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2012

Abstract

Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework. The determination of self-consistent boundary conditions across the gap forms the central theme in order to allow for realistic interface potentials (such as metal-vacuum) which are smooth at the boundary and do not abruptly assume a constant value at the interface. It is shown that a semiclassical expansion of the transmitted wavefunction leads to approximate but self consistent boundary conditions without assuming any specific form of the potential beyond the gap. Neglecting the exchange and correlation potentials, the quantum Child-Langmuir law is investigated. It is shown that at zero injection energy, the quantum limiting current density (J c ) is found to obey the local scaling law J c V g α/D 5-2α with the gap separation D and voltage V g . The exponent α > 1.1 with α → 3/2 in the classical regime of small de Broglie wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bhattacharjee, T. Chowdhury, Appl. Phys. Lett. 95, 061501 (2009)

    Article  ADS  Google Scholar 

  2. H.M. Wang, Z. Zheng, Y.Y. Wang, J.J. Qiu, Z.B. Guo, Z.X. Shen, T. Yu, Appl. Phys. Lett. 96, 023106 (2010)

    Article  ADS  Google Scholar 

  3. S. Sun, L.K. Ang, D. Shiffler, J.W. Luginsland, Appl. Phys. Lett. 99, 013112 (2011)

    Article  ADS  Google Scholar 

  4. P. Maksymovych, M. Pan, P. Yu, R. Ramesh, A.P. Baddorf, S.V. Kalinin, Nanotechnology 22, 254031 (2011)

    Article  ADS  Google Scholar 

  5. C.D. Child, Phys. Rev. Ser. 1 32, 492 (1911)

    Google Scholar 

  6. I. Langmuir, Phys. Rev. 2, 450 (1913)

    Article  ADS  Google Scholar 

  7. Y.Y. Lau, Phys. Rev. Lett. 87, 278301 (2001)

    Article  ADS  Google Scholar 

  8. J.W. Luginsland, Y.Y. Lau, R.M. Gilgenbach, Phys. Rev. Lett. 77, 4668 (1996)

    Article  ADS  Google Scholar 

  9. R.R. Puri, D. Biswas, R. Kumar, Phys. Plasmas 11, 1178 (2004)

    Article  ADS  Google Scholar 

  10. A. Rokhlenko, J.L. Lebowitz, J. Appl. Phys. 110, 033306 (2011)

    Article  Google Scholar 

  11. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Kiejna, K.F. Wojciechowski, Metal Surface Electron Physics (Pergamon, Oxford, 1996)

  13. Y.Y. Lau, D. Chernin, D.G. Colombant, P.-T. Ho, Phys. Rev. Lett. 66, 1446 (1991)

    Article  ADS  Google Scholar 

  14. S.J. Singer, S. Lee, K.F. Freed, J. Chem. Phys. 91, 240 (1989)

    Article  ADS  Google Scholar 

  15. L.K. Ang, T.J.T. Kwan, Y.Y. Lau, Phys. Rev. Lett. 91, 208303 (2003)

    Article  ADS  Google Scholar 

  16. L.K. Ang, Y.Y. Lau, T.J.T. Kwan, IEEE Trans. Plasma Sci. 32, 410 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, D., Kumar, R. Transport across nanogaps using self-consistent boundary conditions. Eur. Phys. J. B 85, 189 (2012). https://doi.org/10.1140/epjb/e2012-30265-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30265-1

Keywords

Navigation