Skip to main content
Log in

Equity trees and graphs via information theory

  • Topical Issue on Interdisciplinary Applications of Physics in Economics and Finance
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the similarities and differences between two measures of the relationship between equities traded in financial markets. Our measures are the correlation coefficients and the mutual information. In the context of financial markets correlation coefficients are well established whereas mutual information has not previously been as well studied despite its theoretically appealing properties. We show that asset trees which are derived from either the correlation coefficients or the mutual information have a mixture of both similarities and differences at the individual equity level and at the macroscopic level. We then extend our consideration from trees to graphs using the “genus 0” condition recently introduced in order to study the networks of equities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Erdös, A. Rényi, Publicationes Mathematicae 6, 290 (1959)

    MATH  Google Scholar 

  2. P. Erdös, A. Rényi, On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17 (1960)

  3. S. Milgram, Psychology Today 2, 60 (1967)

    Google Scholar 

  4. D. Watts, H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  5. D. Watts, American Journal of Sociology 105, 493 (1999)

    Article  Google Scholar 

  6. R. Albert, A. Barabási, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  7. R. Solé, J. Montoya, Proc. of the R. Soc. B 268, 2039 (2001)

    Article  Google Scholar 

  8. S. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  9. R. Albert, A. Barabási, Nature 401, 130 (1999)

    Article  ADS  Google Scholar 

  10. G. Abramson, M. Kuperman, Phys. Rev. E 63 (2001)

  11. J. Delgado, Artificial Intelligence 141, 171 (2002)

    Article  MathSciNet  Google Scholar 

  12. A. Kirman, J. Evol. Econ. 7, 339 (1997)

    Article  Google Scholar 

  13. J. Onnela, K. Kaski, J. Kertész, Eur. Phys. J. B 38, 353 (2004)

    Article  ADS  Google Scholar 

  14. M.-F. Cattin, L.-F. Bersier, C. Banašek-Richter, R. Baltensperger, J.-P. Gabriel, Nature 427, 835 (2004)

    Article  ADS  Google Scholar 

  15. W. Baker, AJS 96, 589 (1990)

    Article  Google Scholar 

  16. M. Boss, H. Elsinger, M. Summer, S. Thurner, Quantitative Finance 4, 677 (2004)

    Article  Google Scholar 

  17. J. Onnela, A. Chakraborti, K. Kaski, J. Kertész, Phys. A 324, 247 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Onnela, A. Chakraborti, K. Kaski, J. Kertész, A. Kanto, Phys. Rev. E 68, 056110 (2003)

    Article  ADS  Google Scholar 

  19. G. Bonanno, F. Lillo, R. Mantegna, Quantitative Finance 1, 96 (2001)

    Article  Google Scholar 

  20. M. McDonald, O. Suleman, S. Williams, S. Howison, N. Johnson, Phys. Rev. E. 72, 046106 (2005)

    Article  ADS  Google Scholar 

  21. J. Onnela, A. Chakraborti, K. Kaski, J. Kertész, A. Kanto, Phys. Scr. T106, 48 (2003)

    Article  MATH  ADS  Google Scholar 

  22. N. Slonim, G. Atwal, G. Tkačik, W. Bialek, PNAS 102, 18297 (2005)

    Article  MATH  ADS  Google Scholar 

  23. N. Slonim, G. Atwal, G. Tkačik, W. Bialek. Estimating mutual information and multi-information in large networks, [arXiv:IT/0502017] (2005)

  24. D. Mackay, Information theory, inference, and learning algorithms (Cambridge University Press, New York, 2003)

    MATH  Google Scholar 

  25. H. Matsuda, K. Kudo, R. Nakamura, O. Yamakawa, T. Murata, Int. J. Th. Phys. 35, 1572 (1996)

    Article  Google Scholar 

  26. C. Cellucci, A. Albano, P. Rapp, Phys. Rev. E 71, 066208 (2005)

    Article  ADS  Google Scholar 

  27. N. Slonim, http://www.princeton.edu/~nslonim/

  28. R. Wicks, S. Chapman, R. Dendy, Phys. Rev. E 75 (2007)

  29. D.-H. Kim, H. Jeong, Phys. Rev. E 72, 046133 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Gleich, http://www.stanford.edu/~dgleich/programs/matlab_bgl/

  31. M. Tumminello, T. Di Matteo, R. Mantegna, PNAS 102, 10421 (2005)

    Article  ADS  Google Scholar 

  32. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Rep. 424, 174 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  33. V. Batagelj, A. Mrvar, Pajek. http://pajek.imfm.si/doku.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Harré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harré, M., Bossomaier, T. Equity trees and graphs via information theory. Eur. Phys. J. B 73, 59–68 (2010). https://doi.org/10.1140/epjb/e2009-00419-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00419-5

Keywords

Navigation