Skip to main content
Log in

Angular dependence of tunneling magnetoresistance in magnetic semiconductor heterostructures

  • Mesoscopic Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Theoretical studies on spin-dependent transport in magnetic tunnel heterostructures consisting of two diluted magnetic semiconductors (DMS) separated by a nonmagnetic semiconductor (NMS) barrier, are carried in the limit of coherent regime by including the effect of angular dependence of the magnetizations in DMS. Based on parabolic valence band effective mass approximation and spontaneous magnetization of DMS electrodes, we obtain an analytical expression of angular dependence of transmission for DMS/NMS/DMS junctions. We also examine the dependence of spin polarization and tunneling magnetoresistance (TMR) on barrier thickness, temperature, applied voltage and the relative angle between the magnetizations of two DMS layers in GaMnAs/GaAs/GaMnAs heterostructures. We discuss the theoretical interpretation of this variation. Our results show that TMR of more than 65% are obtained at zero temperature, when one GaAs monolayer is used as a tunnel barrier. It is also shown that the TMR decreases rapidly with increasing barrier width and applied voltage; however at high voltages and low thicknesses, the TMR first increases and then decreases. Our calculations explain the main features of the recent experimental observations and the application of the predicted results may prove useful in designing nano spin-valve devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  • J. Daughton, J. Appl. Phys. 81, 3758 (1997)

    Article  ADS  Google Scholar 

  • J.C. Slonczewski, Phys. Rev. B 39, 6995 (1989)

    Article  ADS  Google Scholar 

  • E.Y. Tsymbal, D.G. Pettifor, J. Phys.: Condens. Matter 9, L411 (1997)

  • K. Wang, S. Zhang, P.M. Levy, L. Szunyogh, P. Weinberger, J. Magn. Magn. Mater. 189, L131 (1998)

  • M. Jullière, Phys. Lett. A 54, 225 (1975)

    Article  ADS  Google Scholar 

  • D.D. Awschalom, D. Loss, N. Samarth, in Semiconductor Spintronics and Quantum Computation (Springer- Verlag, Berlin-Heidelberg, 2002)

  • E.Y. Tsymbal, O.N. Mryasov, P.R. LeClair, J. Phys.: Condens. Matter 15, R109 (2003)

  • P. LeClair, J.K. Ha, H.J.M. Swagten, J.T. Kohlhepp, C.H. van de Vin, W.J.M. de Jonge, Appl. Phys. Lett. 80, 625 (2002)

    Article  ADS  Google Scholar 

  • A. Saffarzadeh, J. Magn. Magn. Mater. 269, 327 (2004)

    Article  ADS  Google Scholar 

  • A.A. Shokri, A. Saffarzadeh, J. Phys.: Condens. Matter 16, 4455 (2004)

    Article  ADS  Google Scholar 

  • A.A. Shokri, A. Saffarzadeh, Eur. Phys. J. B 42, 187 (2004)

    Article  ADS  Google Scholar 

  • D.C. Worledge, T.H. Geballe, J. Appl. Phys. 88, 5277 (2000)

    Article  ADS  Google Scholar 

  • A.T. Filip, P. LeClair, C.J.P. Smits, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, W.J.M. de Jonge 81, 1815 (2002)

    Google Scholar 

  • A. Saffarzadeh, J. Phys.: Condensed Matter 15, 3041 (2003)

    Article  ADS  Google Scholar 

  • M. Wilczyński, J. Barnaś, R. Świrkowicz, J. Magn. Magn. Mater. 267, 391 (2003)

    Article  ADS  Google Scholar 

  • A. Mauger, C. Godart, Phys. Rep. 141, 51 (1986)

    Article  ADS  Google Scholar 

  • H. Ohno, Science 281, 951 (1998); H. Ohno, J. Magn. Magn. Matter. 200, 110 (1999)

    Article  Google Scholar 

  • H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Nature (London) 408, 944 (2000)

    Article  ADS  Google Scholar 

  • T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000); B. Lee, T. Jungwirth, A.H. Mac-Donald, Semicond. Sci. Technol. 17, 393 (2002)

    Article  ADS  Google Scholar 

  • J. König J, H.-H. Lin, A.H. MacDonald, Phys. Rev. Lett. 84, 5628 (2000)

    Article  Google Scholar 

  • D. Chiba, N. Akiba, F. Matsukura, Y. Ohno, H. Ohno, Appl. Phys. Lett. 77, 1873 (2000)

    Article  ADS  Google Scholar 

  • M. Tanaka, Y. Higo, Phys. Rev. Lett. 87, 026602 (2001)

    Article  ADS  Google Scholar 

  • T. Hayashi, M. Tanaka, A. Asamitsu, J. Appl. Phys. 87, 4673 (2000)

    Article  ADS  Google Scholar 

  • Y.C. Tao, J.G. Hu, H. Liu, J. Appl. Phys. 96, 498 (2004)

    Article  ADS  Google Scholar 

  • A. Saffarzadeh, A.A. Shokri, J. Magn. Magn. Matter. (2006), in press

  • R. Meservey, P.M. Tedrow, Phys. Rep. 238, 173 (1994); M.A.M. Gijs, G.E.W. Bauer, Adv. Phys. 46, 285 (1997); J.M. De Teresa, A. Barthelemy, A. Fert, J.P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, A. Vaurès, Science 286, 507 (1999), and references therein

    Article  ADS  Google Scholar 

  • C.B. Duke, in Tunneling Phenomena in Solids, edited by E. Burstein, S. Lundquist (New York, Plenum, 1969)

  • M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions (New York, Dover, 1965)

  • D. Chiba, F. Matsukara, H. Ohno, Physica E 21, 966 (2004)

    Article  ADS  Google Scholar 

  • W.F. Brinkman, R.C. Dynes, J.M. Rowell, J. Appl. Phys. 41, 1915 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shokri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokri, A. Angular dependence of tunneling magnetoresistance in magnetic semiconductor heterostructures. Eur. Phys. J. B 50, 475–481 (2006). https://doi.org/10.1140/epjb/e2006-00158-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00158-1

PACS.

Navigation