Skip to main content
Log in

80 years of experimental photo-fission research

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

High energy photons, or \(\gamma \)-rays, were among the very first probes used to induce fission. Their significant impact in this field is due to particular properties of the \(\gamma \)-rays, such as the lack of a Coulomb barrier and the low, well-defined angular momentum transfer, but also to the variety of \(\gamma \)-ray sources developed over the years. This variety, going from simple but intense bremsstrahlung beams, through complex virtual photon excitations, to high resolution monochromatic sources of several types, gave rise to extensive photo-fission research programs. The review presents the evolution over more than 80 years of the methodology and instrumentation used in photo-fission experiments. The most important developments in fundamental and applied science are summarized and discussed. The main improvements necessary for the progression of this field into the age of nuclear photonics are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]

Notes

  1. In the past, resonances were labeled with the incoming partial wave \(L_{2I,2J}\), as in \(\Delta (1232)P_{33}\) and \(N(1680)F_{15}\). Now the partial-wave notation has been replaced with the spin-parity \(J^\pi \) of the state, as e.g., \(\Delta (1232)3/2^+\) and \(N(1680)5/2^+\).

References

  1. K.-H. Schmidt, B. Jurado, Review on the progress in nuclear fission—experimental methods and theoretical descriptions. Rep. Prog. Phys. 81, 106301 (2018)

    ADS  PubMed  Google Scholar 

  2. A.N. Andreyev, K. Nishio, K.-H. Schmidt, Nuclear fission: a review of experimental advances and phenomenology. Rep. Prog. Phys. 81, 016301 (2018)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  3. L. Csige, D.M. Filipescu, Photofission studies: past and future, in Handbook of nuclear physics. ed. by I. Tanihata et al. (Springer, Singapore, 2020)

    Google Scholar 

  4. N. Schunck, D. Regnier, Theory of nuclear fission. Prog. Part. Nucl. Phys. 125, 103963 (2022)

    CAS  Google Scholar 

  5. M. Bender et al., Future of nuclear fission theory. J. Phys. G: Nucl. Part. Phys. 47, 113002 (2020)

    CAS  Google Scholar 

  6. N. Schunck, L.M. Robledo, Microscopic theory of nuclear fission: a review. Rep. Prog. Phys. 79, 116301 (2016)

    ADS  CAS  PubMed  Google Scholar 

  7. H.J. Krappe, K. Pomorski, Theory of nuclear fission (Springer, Heidelberg, 2012)

    Google Scholar 

  8. C. Simenel, A.S. Umar, Heavy-ion collisions and fission dynamics with the time-dependent Hartree–Fock theory and its extensions. Prog. Part. Nucl. Phys. 103, 19 (2018)

    ADS  CAS  Google Scholar 

  9. P. Thirolf, D. Habs, Spectroscopy in the second and third minimum of actinide nuclei. Prog. Part. Nucl. Phys. 49, 325 (2002)

    ADS  CAS  Google Scholar 

  10. E. Jacobs, U. Kneissl, Photon and electron induced fission, in The nuclear fission process. ed. by C. Wagemans (CRC PRESS INC, Boca Raton, 1991)

    Google Scholar 

  11. N. Bohr, J.A. Wheeler, The mechanism of nuclear fission. Phys. Rev. 56, 426 (1939)

    ADS  CAS  Google Scholar 

  12. N. Bohr, Neutron capture and nuclear constitution. Nature 137, 344 (1936)

    ADS  CAS  Google Scholar 

  13. B.S. Bhandari, A.S. Al-Kharam, Tunneling through equivalent multihumped fission barriers: some implications for the actinide nuclei. Phys. Rev. C 39, 917 (1989)

    ADS  CAS  Google Scholar 

  14. V.M. Strutinsky, Collective motion at large amplitudes and finite velocities. Zeitschrift für Physik A 280, 99 (1977)

    ADS  Google Scholar 

  15. S. Bjornholm, J.E. Lynn, The double-humped fission barrier. Rev. Mod. Phys. 52, 725 (1980)

    ADS  Google Scholar 

  16. A.V. Karpov, A. Kelic, K.-H. Schmidt, On the topographical properties of fission barriers. J. Phys. G: Nucl. Part. Phys. 35, 035104 (2008)

    ADS  Google Scholar 

  17. B. Mei et al., Empirical parametrization for production cross sections of neutron-rich nuclei by photofission of \(^{238}\)U at low energies. Phys. Rev. C 96, 064610 (2017)

    ADS  Google Scholar 

  18. K. Hirose et al., Role of multichance fission in the description of fission-fragment mass distributions at high energies. Phys. Rev. Lett. 119, 222501 (2017)

    ADS  CAS  PubMed  Google Scholar 

  19. O. Hahn, F. Strassmann, Über den nachweis und das verhalten der bei der bestrahlung des Urans mittels neutronen entstehenden erdalkalimetalle. Naturwissenschaften 27, 11 (1939)

    ADS  CAS  Google Scholar 

  20. O. Hahn, F. Strassmann, Nachweis der entstehung aktiver bariumisotope aus Uran und Thorium durch neutronenbestrahlung; nachweis weiterer aktiver bruchstficke bei der Uranspaltung. Naturwissenschaften 27, 89 (1939)

    ADS  CAS  Google Scholar 

  21. L. Meitner, O.R. Frisch, Disintegration of uranium by neutrons: a new type of nuclear reaction. Nature 143, 239 (1939)

    ADS  CAS  Google Scholar 

  22. L. Meitner, O.R. Frisch, Products of the fission of the uranium nucleus. Nature 143, 471 (1939)

    ADS  CAS  Google Scholar 

  23. G.N. Flerov, K.A. Petrjak, Spontaneous fission of Uranium. Phys. Rev. 58, 89 (1940)

    ADS  CAS  Google Scholar 

  24. K.A. Petrjak, G.N. Flerov, Spontaneous fission of uranium. Physics-Uspekhi 25, 171 (1941)

    Google Scholar 

  25. N. Bohr, Disintegration of heavy nuclei. Nature 143, 330 (1939)

    ADS  CAS  Google Scholar 

  26. H. von Halban, F. Joliot, L. Kowarski, Number of neutrons liberated in the nuclear fission of Uranium. Nature 143, 680 (1939)

    ADS  Google Scholar 

  27. F. Perrin, Calcul relatif aux conditions éventuelles de transmutation en chaine de l’uranium. Comptes rendus de l’Académie des Sciences 208, 1394 (1939)

    CAS  Google Scholar 

  28. R. Peierls, Critical conditions in neutron multiplication. Math. Proc. Camb. Philos. Soc. 35, 610 (1939)

    ADS  MathSciNet  CAS  Google Scholar 

  29. L.A. Turner, Nuclear fission. Rev. Mod. Phys. 12, 1 (1940)

    ADS  CAS  Google Scholar 

  30. R.B. Roberts, R.C. Meyer, L.R. Hafstad, Droplet fission of uranium and thorium nuclei. Phys. Rev. 55, 416 (1939)

    ADS  CAS  Google Scholar 

  31. F.A. Heyn, A.H.W. Aten Jr., C.J. Bakker, Transmutation of uranium and thorium by neutrons. Nature 143, 516 (1939)

    ADS  CAS  Google Scholar 

  32. R.O. Haxby et al., Photo-fission of uranium and thorium. Phys. Rev. 58, 92 (1940)

    ADS  CAS  Google Scholar 

  33. R.O. Haxby et al., Photo-fission of uranium and thorium. Phys. Rev. 59, 57 (1941)

    ADS  CAS  Google Scholar 

  34. B. Arakatsu et al., Photo-fission of uranium and thorium produced by the \(\gamma \) rays of lithium and fluorine bombarded with high-speed protons. Proc. Phys. Math. Soc. Jpn. 23, 440 (1941)

    Google Scholar 

  35. B.C. Reed, From fission to censorship: 18 months on the road to the bomb. Ann. Phys. 530, 1700455 (2018)

    MathSciNet  Google Scholar 

  36. D.L. Hill, J.A. Wheeler, Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102 (1953)

    ADS  CAS  Google Scholar 

  37. G.C. Baldwin, G.S. Klaiber, Photo-fission in heavy elements. Phys. Rev. 71, 3 (1947)

    ADS  CAS  Google Scholar 

  38. W. Bothe, W. Gentner, Photofission of \(^{238}\)Pu, \(^{240}\)Pu, and \(^{238}\)Pu in the energy range 5–10 MeV. Zeitschrift für Physik 106, 236 (1937)

    ADS  CAS  Google Scholar 

  39. M. Goldhaber, E. Teller, On nuclear dipole vibrations. Phys. Rev. 74, 1046 (1948)

    ADS  CAS  Google Scholar 

  40. D. Budker et al., Expanding nuclear physics horizons with the Gamma Factory. Annalen der Physik (Berlin) 534, 2100284 (2022)

    ADS  Google Scholar 

  41. P. Constantin, C. Matei and C.A. Ur, “Design concept of a \(\gamma \)-ray beam with low bandwidth and high spectral density”, to appear in Physical Review Accelerators and Beams (2024)

  42. J. Dilling, R. Krücken, L. Merminga, ISAC and ARIEL: the TRIUMF radioactive beam facilities and the scientific program (Springer, Dordrecht, 2014)

    Google Scholar 

  43. Z.R. Hao et al., Collimator system of SLEGS beamline at Shanghai Light Source. Nucl. Instrum. Methods Phys. Res. Sect. A 1013, 165638 (2021)

    CAS  Google Scholar 

  44. H. Naik, G.N. Kim, K. Kim, Mass-yield distributions of fission products in bremsstrahlung-induced fission of \(^{232}\)Th. Phys. Rev. C 97, 014614 (2018)

    ADS  CAS  Google Scholar 

  45. J.-O. Adler et al., The upgraded photon tagging facility at the MAX IV Laboratory. Nucl. Instrum. Methods Phys. Res. A 715, 1 (2013)

    ADS  CAS  Google Scholar 

  46. M. Wakasugi et al., Construction of the SCRIT electron scattering facility at the RIKEN RI Beam Factory. Nucl. Instrum. Methods Phys. Res. Sect. B 317, 668 (2013)

    ADS  CAS  Google Scholar 

  47. F. Azaiez, S. Essabaa, F. Ibrahim, D. Verney, The ALTO facility in orsay, nuclear physics. Nucl. Phys. News 23, 5 (2013)

    ADS  Google Scholar 

  48. B. Szpunar et al., Estimate of production of medical isotopes by photo-neutron reaction at the Canadian Light Source. Nucl. Instrum. Methods Phys. Res. Sect. A 729, 41 (2013)

    ADS  CAS  Google Scholar 

  49. H.R. Weller et al., Research opportunities at the upgraded HI\(\gamma \)S facility. Prog. Part. Nucl. Phys. 62, 257 (2009)

    ADS  CAS  Google Scholar 

  50. D. Savran et al., The low-energy photon tagger NEPTUN. Nucl. Instrum. Methods Phys. Res. Sect. A 613, 232 (2010)

    ADS  CAS  Google Scholar 

  51. P. Mohr et al., Real photon scattering up to 10 MeV: the improved facility at the Darmstadt electron accelerator S-DALINAC. Nucl. Instrum. Methods Phys. Res. Sect. A 423, 480 (1999)

    ADS  CAS  Google Scholar 

  52. R. Schwengner et al., The photon-scattering facility at the superconducting electron accelerator ELBE. Nucl. Instrum. Methods Phys. Res. Sect. A 555, 211 (2005)

    ADS  CAS  Google Scholar 

  53. N. Muramatsu et al., Development of high intensity laser-electron photon beams up to 2.9 GeV at the SPring-8 LEPS beamline. Nucl. Instrum. Methods Phys. Res. Sect. A 737, 184 (2014)

    ADS  CAS  Google Scholar 

  54. Accelerating new discoveries in nuclear physics (2021). https://www.llnl.gov/news/accelerating-new-discoveries-nuclear-physics

  55. M. Delarue et al., Measurement of cumulative photofission yields of \(^{235}\)U and \(^{238}\)U with a 16 MeV bremsstrahlung photon beam. Nucl. Instrum. Methods Phys. Res. Sect. A 1011, 165598 (2021)

    CAS  Google Scholar 

  56. D. Babusci et al., Project GRAAL: the scientific case. Nuovo Cimento A 103, 1555 (1990)

    ADS  Google Scholar 

  57. J. Hillert, The bonn electron stretcher accelerator ELSA: past and future. Eur. Phys. J. A Hadrons Nuclei 28, 139 (2006)

    ADS  Google Scholar 

  58. K.-H. Krause et al., A tagging system for linearly polarized photons. Nucl. Instrum. Methods Phys. Res. Sect. A 310, 577 (1991)

    ADS  Google Scholar 

  59. G.Y. Kezerashvili, A.M. Milov, N.Y. Muchnoi, A.P. Usov, A compton source of high energy polarized tagged \(\gamma \)-ray beams. The ROKK-1M facility. Nucl. Instrum. Methods Phys. Res. Sect. B 145, 40 (1998)

    ADS  CAS  Google Scholar 

  60. C. Cetina et al., Photofission of heavy nuclei at energies up to 4 GeV. Phys. Rev. Lett. 84, 5740 (2000)

    ADS  CAS  PubMed  Google Scholar 

  61. Y.P. Gangrsky et al., Independent yields of Kr and Xe fragments in the photofission of \(^{237}\)Np and \(^{243}\)Am odd nuclei. Phys. Atom. Nucl. 68, 1417 (2005)

    ADS  CAS  Google Scholar 

  62. National Science Center Kharkov Institute of Physics and Technology (2021). https://www.kipt.kharkov.ua/en/

  63. H. Utsunomiya, S. Hashimoto, S. Miyamoto, The \(\gamma \)-Ray Beam–Line at NewSUBARU. Nucl. Phys. News 25, 25 (2015)

    ADS  Google Scholar 

  64. H. Ohgaki et al., Measurement of laser-induced compton backscattered photons with anti-Compton spectrometer. IEEE Trans. Nucl. Sci. 38, 386 (1991)

    ADS  CAS  Google Scholar 

  65. A.M. Sandorfi et al., High energy gamma ray beams from Compton backscattered laser light. IEEE Trans. Nucl. Sci. 30, 3083 (1983)

    ADS  CAS  Google Scholar 

  66. C.D. Bowman et al., Very low energy photofission of \(^{238}\)U. Phys. Rev. C 12, 863 (1975)

    ADS  CAS  Google Scholar 

  67. S.S. Belyshev et al., Mass yield distributions and fission modes in photofission of \(^{238}\)U below 20 MeV. Phys. Rev. C 91, 034603 (2015)

    ADS  Google Scholar 

  68. G. Matone et al., In: S. Costa, C. Schaerf, (eds.) A monochromatic and polarized photon beam for photonuclear reactions. The LADON project at Frascati. Springer, Heidelberg (1977)

  69. G.Y. Kezerashvili, A.M. Milov, B.B. Wojtsekhowski, The gamma ray energy tagging spectrometer of the ROKK-2 facility at the VEPP-3 storage ring. Nucl. Instrum. Methods Phys. Res. Sect. A 328, 506 (1993)

    ADS  Google Scholar 

  70. J.C. Sanabria et al., Photofission of actinide nuclei in the quasideuteron and lower part of the \(\Delta \) energy region. Phys. Rev. C 61, 034604 (2000)

    ADS  Google Scholar 

  71. B. Schröder, G. Nydahl, B. Forkman, High-energy photofission in \(^{238}\)U, \(^{232}\)Th and \(^{209}\)Bi. Nucl. Phys. A 143, 449 (1970)

    ADS  Google Scholar 

  72. E. Jacobs et al., Product yields for the photofission of \(^{238}\)U with 12-, 15-, 20-, 30- and 70-MeV bremsstrahlung. Phys. Rev. C 19, 422 (1979)

    ADS  CAS  Google Scholar 

  73. G. Bellia et al., Experimental investigation on the possible complexity in the potential energy surface of \(^{232}\)Th. Zeitschrift für Physik A Atoms Nuclei 308, 149 (1982)

    ADS  CAS  Google Scholar 

  74. J.T. Caldwell et al., Giant resonance for the actinide nuclei: photoneutron and photofission cross sections for \(^{235}\)U, \(^{236}\)U, \(^{238}\)U, and \(^{232}\)Th. Phys. Rev. C 21, 1215 (1980)

    ADS  CAS  Google Scholar 

  75. P. Argan et al., A 130 to 530 MeV tagged photon beam obtained by in-flight positron annihilation. Nucl. Instrum. Methods Phys. Res. 228, 20 (1984)

    ADS  CAS  Google Scholar 

  76. N.A. Demekhina, G.S. Karapetyan, Multimode approximation for \(^{238}\)U photofission at intermediate energies. Phys. Atom. Nucl. 71, 27 (2008)

    ADS  CAS  Google Scholar 

  77. J.W. Weil, B.D. McDaniel, The production of protons from carbon by monoenergetic gamma rays. Phys. Rev. 92, 391 (1953)

    ADS  CAS  Google Scholar 

  78. J. Goldemberg, A photon monochromator for bremsstrahlung radiation. Phys. Rev. 93, 1426 (1954)

    ADS  CAS  Google Scholar 

  79. R.A. Schmitt, N. Sugarman, Uranium photofission yields. Phys. Rev. 95, 1260 (1954)

    ADS  CAS  Google Scholar 

  80. B.C. Cook et al., Praseodymium-141 photoneutron cross section to 65 MeV. Phys. Rev. 143, 730 (1966)

    ADS  CAS  Google Scholar 

  81. L.G. Morreto et al., Electron- and bremsstrahlung-induced fission of heavy and medium-heavy nuclei. Phys. Rev. 179, 1176 (1969)

    ADS  Google Scholar 

  82. J.A. Jungerman, H.H. Steiner, Photofission cross sections of U\(^{235}\), U\(^{238}\), Th\(^{232}\), Bi\(^{209}\), and Au\(^{197}\) at energies of 150 to 500 MeV. Phys. Rev. 106, 585 (1957)

    ADS  CAS  Google Scholar 

  83. D.J.S. Findlay, N.P. Hawkes, M.R. Sené, Photofission of \(^{232}\)Th near threshold. Nucl. Phys. A 458, 217 (1986)

    ADS  Google Scholar 

  84. C. Tzara, A method of producing narrow spectrum of high-energy photons. Comptes rendus de l’Académie des Sciences 56, 245 (1957)

    Google Scholar 

  85. C.P. Jupiter et al., Radiations from high-energy positrons incident on a beryllium target. Phys. Rev. 121, 866 (1961)

    ADS  CAS  Google Scholar 

  86. Y.N. Ranyuk, P.V. Sorokin, Fission of uranium by electrons with energies from 35 to 260 MeV. Yadernaya Fizika 5, 531 (1967)

    CAS  Google Scholar 

  87. D.E. Greiner et al., Uranium nuclear reactions at 900 MeV/nucleon. Phys. Rev. C 31, 416 (1985)

    ADS  CAS  Google Scholar 

  88. M.L. Justice et al., Electromagnetic dissociation of \(^{238}\)U at 120 MeV/nucleon. Phys. Rev. C 49, 5 (1994)

    ADS  Google Scholar 

  89. M. Bernas et al., Projectile fission at relativistic velocities: a novel and powerful source of neutron-rich isotopes well suited for in-flight isotopic separation. Phys. Lett. B 331, 19 (1994)

    ADS  CAS  Google Scholar 

  90. K.-H. Schmidt et al., Low-energy fission studies of neutron-deficient projectile fragments of \(^{238}\)U. Phys. Lett. B 325, 313 (1994)

    ADS  CAS  Google Scholar 

  91. C. Böckstiegel et al., Total kinetic energies and nuclear-charge yields in the fission of relativistic \(^{233}\)U secondary projectiles. Phys. Lett. B 398, 259 (1997)

    ADS  Google Scholar 

  92. R.H. Milburn, Electron scattering by an intense polarized photon field. Phys. Rev. Lett. 10, 75 (1963)

    ADS  Google Scholar 

  93. F.R. Arutyunian, V.A. Tumanian, The Compton effect on relativistic electrons and the possibility of obtaining high energy beams. Phys. Lett. 4, 176 (1963)

    ADS  Google Scholar 

  94. D.L. Balabanski et al., Photofission experiments at ELI-NP. Roman. Rep. Phys. 68, 621 (2016)

    Google Scholar 

  95. J.M. Mueller, M.W. Ahmed, H.R. Weller, A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission. Nucl. Instrum. Methods Phys. Res. Sect. A 754, 57 (2014)

    ADS  CAS  Google Scholar 

  96. P.A. Zyla, Particle data group: review of particle physics. Prog. Theor. Exp. Phys. 2020, 083–01 (2020)

    Google Scholar 

  97. H. Bethe, W. Heitler, On the stopping of fast particles and on the creation of positive electrons. Proc. Royal Soc. (Lond.) A146, 83 (1934)

    ADS  Google Scholar 

  98. W. Heitler, Quantum theory of radiation (Oxford University Press, London, 1944)

    Google Scholar 

  99. L.I. Schiff, Energy-angle distribution of thin target bremsstrahlung. Phys. Rev. 83, 252 (1951)

    ADS  Google Scholar 

  100. Y.S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815 (1974)

    ADS  CAS  Google Scholar 

  101. Y.S. Tsai, ERRATUM: pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 49, 421 (1977)

    ADS  Google Scholar 

  102. D.J.S. Findlay, Computation of 5–10 MeV bremsstrahlung at \(0^o\) from a \(0.1~\text{ g/cm}^2\) Au radiator. Nucl. Instrum. Methods 206, 507 (1983)

    CAS  Google Scholar 

  103. P.G. Kondev et al., Calculation of bremsstrahlung spectra from a thick tungsten radiator as a function of photon energy and angle. Nucl. Instrum. Methods Phys. Res. Sect. B 71, 126 (1992)

    ADS  Google Scholar 

  104. C. Köhn, U. Ebert, Angular distribution of bremsstrahlung photons and of positrons for calculations of terrestrial gamma-ray flashes and positron beams. Atmos. Res. 135–136, 432 (2014)

    Google Scholar 

  105. J.W. Motz, R.C. Placious, Bremsstrahlung linear polarization. Nuovo Cimento 15, 571 (1960)

    Google Scholar 

  106. S. Agostinelli, Geant4 group: Geant4 - a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003)

    ADS  CAS  Google Scholar 

  107. A.S. Penfold, J.E. Leiss, Analysis of photonuclear cross sections. Phys. Rev. 114, 1332 (1959)

    ADS  CAS  Google Scholar 

  108. E. Van Camp et al., Experimental determination of the proton escape width in the giant dipole resonance of \(^{89}\)Y. Phys. Rev. C 24, 2499 (1981)

    ADS  Google Scholar 

  109. D.J.S. Findlay, A modification to the Penfold–Leiss method of cross-section unfolding. Nucl. Instrum. Methods 213, 353 (1983)

    CAS  Google Scholar 

  110. S.J. Watson, D.J.S. Findlay, M.R. Sené, Photofission and photoneutron measurements on \(^{241}\)Am between 5 and 10 MeV. Nucl. Phys. A 548, 365 (1992)

    ADS  Google Scholar 

  111. E. Bramanis et al., The analysis of photonuclear yield curves. Nucl. Instrum. Methods 100, 59 (1972)

    ADS  CAS  Google Scholar 

  112. B.C. Cook, Least structure solution of photonuclear yield functions. Nucl. Instrum. Methods 24, 256 (1963)

    ADS  Google Scholar 

  113. K.N. Geller, E.G. Muirhead, High resolution second difference analysis of photonuclear yield curves. Nucl. Instrum. Methods 26, 274 (1964)

    ADS  Google Scholar 

  114. V.E. Zhuchko et al., Restoration of photofission cross-sections from bremsstrahlung experiments. Nucl. Instrum. Methods 136, 373 (1976)

    ADS  CAS  Google Scholar 

  115. P.H. Cannington, R.J.J. Stewart, B.M. Spicer, The photoneutron cross section of \(^{141}\)Pr. Nucl. Phys. A 109, 385 (1968)

    ADS  CAS  Google Scholar 

  116. R.L. Bramblett et al., Photoneutron cross sections of Pr\(^{141}\) and I\(^{127}\) from Threshold to 33 MeV. Phys. Rev. 14, 1198 (1966)

    ADS  Google Scholar 

  117. R.E. Sund et al., \(^{141}\)Pr(\(\gamma \), n) cross section from threshold to 24 MeV. Phys. Rev. C 2, 1129 (1970)

    ADS  Google Scholar 

  118. C.D. Bowman et al., Subthreshold photofission of \(^{235}\)U and \(^{232}\)Th. Phys. Rev. C 17, 1086 (1978)

    ADS  CAS  Google Scholar 

  119. G. Bellia et al., Deep subthreshold photofission yields analysis. Phys. Rev. C 20, 1059 (1979)

    ADS  CAS  Google Scholar 

  120. V.E. Zhuchko et al., Isomer shells in the cross section of deep subbarrier photofission of heavy nuclei. JETP Lett. 22, 118 (1975)

    ADS  Google Scholar 

  121. V.E. Zhuchko et al., Deep subbarrier anomalies in the photofission of heavy nuclei. Phys. Lett. B 68, 323 (1977)

    ADS  Google Scholar 

  122. V.E. Zhuchko et al., Study of the probability of near-threshold fission of the isotopes of Th, U, Np, Pu, and Am by bremsstrahlung. Soviet J. Nucl. Phys. 28, 1170 (1978)

    CAS  Google Scholar 

  123. Y.B. Ostapenko et al., Isomer shelf in the photofission of \(^{232}\)Th and \(^{238}\)U. Phys. Rev. C 24, 529 (1981)

    ADS  CAS  Google Scholar 

  124. Y.B. Ostapenko et al., Search for an isomer shelf in \(^{232}\)Th photofission. JETP Lett. 37, 666 (1983)

    ADS  Google Scholar 

  125. C.D. Bowman, G.F. Auchampaugh, S.C. Fultz, Photodisintegration of U\(^{235}\). Phys. Rev. 133, 676 (1964)

    ADS  CAS  Google Scholar 

  126. A.S. Soldatov et al., Photofission of \(^{238}\)Pu, \(^{240}\)Pu, and \(^{242}\)Pu in the energy range 5–10 MeV. Phys. Atom. Nucl. 63, 31 (2000)

    ADS  CAS  Google Scholar 

  127. A.S. Soldatov, Photofission of americium isotopes in the energy range 6–12 MeV. Phys. Atom. Nucl. 64, 169 (1992)

    ADS  Google Scholar 

  128. A.S. Soldatov, G.N. Smirenkin, Yield and cross section of \(^{232}\)Th and \(^{236}\)U fission induced by \(\gamma \) quanta with energies up to 11 MeV. Phys. Atom. Nucl. 58, 224 (1995)

    CAS  Google Scholar 

  129. A.S. Soldatov, V.E. Rudnikov, G.N. Smirenkin, \(^{231}\)Pa photofission cross section. Atom. Energy 78, 400 (1995)

    CAS  Google Scholar 

  130. A.S. Soldatov, Relative Measurements of Photofission Cross Sections with the Use of a Bremsstrahlung Spectrum. Phys. Part. Nucl. 39, 173 (2008)

    CAS  Google Scholar 

  131. T. Methasiri, High-energy photofission cross sections of uranium and thorium. Nucl. Phys. A 158, 433 (1970)

    ADS  CAS  Google Scholar 

  132. T. Methasiri, S.A.E. Johansson, High-energy photofission of heavy and medium-heavy elements. Nucl. Phys. A 167, 97 (1971)

    ADS  CAS  Google Scholar 

  133. I. Kroon, B. Forkman, Photon-induced nuclear reactions above 1 GeV: (III) fission in gold and lead. Nucl. Phys. A 197, 81 (1972)

    ADS  CAS  Google Scholar 

  134. V. Emma, S. Lo Nigro, C. Milone, Photofission cross-section of Bi and Pb between 300 and 1000 MeV. Lettere al Nuovo Cimento 2, 117 (1971)

    Google Scholar 

  135. V. Emma, S. Lo Nigro, C. Milone, Photofission of Tl, Hg and Au up to 1000 MeV. Lettere al Nuovo Cimento 2, 271 (1971)

    Google Scholar 

  136. H. Naik et al., Mass yield distributions of fission products from photo-fission of \(^{238}\)U induced by 11.5–17.3 MeV bremsstrahlung. Eur. Phys. J. A 49, 94 (2013)

    ADS  Google Scholar 

  137. S. Pommé et al., Fragment characteristics for the photofission of \(^{238}\)U with 6.1–13.1 MeV bremsstrahlung. Nucl. Phys. A 572, 237 (1994)

    ADS  Google Scholar 

  138. B. Schröder, Photon-induced nuclear reactions above 1 GeV. (IV) Mass distribution in the 6.00 GeV bremsstrahlung-induced fission of natural Uranium. Nucl. Phys. A 197, 88 (1972)

    ADS  Google Scholar 

  139. M. Areskoug et al., Photofission in gold at intermediate energy. Nucl. Phys. A 226, 93 (1974)

    ADS  CAS  Google Scholar 

  140. M. Areskoug, B. Schröder, G. Lindgren, Photofission in Bismuth at Intermediate Energy. Phys. Rev. A 251, 418 (1975)

    Google Scholar 

  141. D. De Frenne et al., Charge distributions for the photofission of \(^{235}\)U and \(^{238}\)U with 12–30 MeV bremsstrahlung. Phys. Rev. C 26, 1356 (1982)

    ADS  Google Scholar 

  142. E. Jacobs et al., Fragment mass and kinetic energy distributions for the photofission of \(^{238}\)U with 12-, 15-, 20-, 30- and 70-MeV bremsstrahlung. Phys. Rev. C 20, 2249 (1979)

    ADS  CAS  Google Scholar 

  143. M. Piessens et al., Mass and kinetic energy distributions for the photofission of \(^{232}\)Th with 6.44 and 13.15 MeV bremsstrahlung. Nucl. Phys. A 556, 88 (1993)

    ADS  Google Scholar 

  144. H. Thierens et al., Kinetic energy and fragment mass distributions for \(^{240}\)Pu(s.f.), \(^{239}\)Pu(n\(_{th}\), f), and \(^{240}\)Pu(\(\gamma \), f). Phys. Rev. C 23, 2104 (1981)

    ADS  CAS  Google Scholar 

  145. Y.P. Gangrskii et al., Yield of fission fragments from the photofission of actinide nuclei. Phys. Part. Nucl. Lett. 10, 422 (2013)

    CAS  Google Scholar 

  146. N.A. Demekhina, G.S. Karapetyan, Symmetric and asymmetric modes of \(^{232}\)Th photofission at intermediate energies. Phys. Atom. Nucl. 73, 24 (2010)

    ADS  CAS  Google Scholar 

  147. H. Naik et al., Mass-yield distributions of fission products from photofission of \(^{232}\)Th induced by 45- and 80-MeV bremsstrahlung. Phys. Rev. C 86, 054607 (2012)

    ADS  Google Scholar 

  148. H. Naik et al., Mass-yield distribution of fission products from photo-fission of \(^{\rm nat}\)Pb induced by 2.5 GeV bremsstrahlung. Eur. Phys. J. A 47, 37 (2011)

    ADS  Google Scholar 

  149. T.E. Cowan et al., Photonuclear fission from high energy electrons from ultraintense laser-solid interactions. Phys. Rev. Lett. 84, 903 (2000)

    ADS  CAS  PubMed  Google Scholar 

  150. H. Schwoerer et al., Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 86, 2317 (2001)

    ADS  CAS  PubMed  Google Scholar 

  151. H. Schwoerer et al., Fission of actinides using a tabletop laser. Europhys. Lett. 61, 47 (2003)

    ADS  CAS  Google Scholar 

  152. J.R. Huizenga et al., Photofission cross sections of several nuclei with mono-energetic gamma rays. Nucl. Phys. 34, 439 (1962)

    CAS  Google Scholar 

  153. H.X. Zhang, T.R. Yeh, H. Lancman, Intermediate structure in the photofission cross section of \(^{232}\)Th. Phys. Rev. Lett. 53, 34 (1984)

    ADS  CAS  Google Scholar 

  154. H.X. Zhang, T.R. Yeh, H. Lancman, Photofission cross section of \(^{232}\)Th. Phys. Rev. C 34, 1397 (1986)

    ADS  CAS  Google Scholar 

  155. A. Manfredini et al., Cross sections for the photofission of \(^{232}\)Th, induced by mono-energetic gamma rays of 12 different energies. Nucl. Phys. A 127, 687 (1969)

    ADS  CAS  Google Scholar 

  156. A. Manfredini et al., Angular distribution of \(^{238}\)U photofission fragments for 12 different mono-energetic \(\gamma \)-rays. Nucl. Phys. A 123, 664 (1969)

    ADS  Google Scholar 

  157. E.J. Dowdy, T.L. Krysinski, Angular distributions of \(^{238}\)U photofission fragments. Nucl. Phys. A 175, 501 (1971)

    ADS  CAS  Google Scholar 

  158. S. Kahane, A. Wolf, Photofission of \(^{238}\)U with neutron-capture gamma rays. Phys. Rev. C 32, 1944 (1985)

    ADS  CAS  Google Scholar 

  159. A.M. Khan, J.W. Knowles, Photofission of \(^{232}\)Th, \(^{282}\)U and \(^{235}\)U near threshold using a variable energy beam of \(\gamma \)-rays. Nucl. Phys. A 179, 333 (1972)

    ADS  CAS  Google Scholar 

  160. R.A. Anderl, M.V. Yester, R.C. Morrison, Photofission cross sections of \(^{238}\)U and \(^{235}\)U from 5 MeV to 8 MeV. Nucl. Phys. A 212, 221 (1973)

    ADS  CAS  Google Scholar 

  161. M.V. Yester, R.A. Anderm, R.C. Morrison, Photofission cross sections of \(^{232}\)Th and \(^{236}\)U from threshold to 8 MeV. Nucl. Phys. A 206, 593 (1973)

    ADS  CAS  Google Scholar 

  162. R.A. Anderl et al., Compton scattered neutron capture gamma rays for photofission studies. Nucl. Instrum. Methods 102, 101 (1972)

    ADS  CAS  Google Scholar 

  163. A.M. Cormack, Resonance scattering of gamma rays by nuclei. Phys. Rev. 96, 716 (1954)

    ADS  CAS  Google Scholar 

  164. B.L. Berman, S.C. Fultz, Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys. 47, 713 (1975)

    ADS  CAS  Google Scholar 

  165. Handbook on photonuclear data for applications: Cross sections and spectra. IAEA-TECDOV-1178 (2000)

  166. T. Kawano et al., IAEA photonuclear data library 2019. Nucl. Data Sheets 163, 109 (2020)

    ADS  CAS  Google Scholar 

  167. L.S. Cardman, Photon tagging, present practice and future prospects. In: Technical Report R/83/12/168, Universty of Illinois at Urbana-Champaign (1983)

  168. A. Leprêtre et al., Absolute photofission cross sections for \(^{209}\)Th and \(^{235,238}\)U measured with monochromatic tagged photons (20 MeV \(< e_{\gamma } <\) 110 MeV). Nucl. Phys. A 472, 533 (1987)

  169. J.W. Knowles et al., A high-resolution measurement of the photofission spectrum of \(^{232}\)Th near threshold. Phys. Lett. B 116, 315 (1982)

    ADS  Google Scholar 

  170. P.A. Dickey, P. Axel, \(^{238}\)U and \(^{232}\)Th photofission and photoneutron emission near threshold. Phys. Rev. Lett. 35, 501 (1975)

    ADS  CAS  Google Scholar 

  171. W. Wilke et al., Angular distributions of photofission fragments of particular mass. Phys. Lett. B 207, 385 (1988)

    ADS  CAS  Google Scholar 

  172. W. Wilke et al., Photofission of \(^{238}\)U with monochromatic gamma rays in the energy range 11–16 MeV. Phys. Rev. C 42, 2148 (1990)

    ADS  CAS  Google Scholar 

  173. H. Ries et al., Absolute photofission cross sections for \(^{235,238}\)U in the energy range 11.5-30 MeV. Phys. Rev. C 29, 2346 (1984)

    ADS  CAS  Google Scholar 

  174. J. Ahrens et al., Measurement of the total cross section for \(^{235}\)U and \(^{238}\)U photofission in the \(\Delta -\)resonance region. Phys. Lett. B 146, 303 (1984)

    ADS  Google Scholar 

  175. T. Frommhold et al., Total photofission cross section for \(^{238}\)U as a substitute for the photon absorption cross section in the energy range of the first baryon resonances. Phys. Lett. B 295, 28 (1992)

    ADS  CAS  Google Scholar 

  176. A.S. Iljinov et al., Fissilities of \(^{238}\)U and \(^{237}\)Np nuclei measured with tagged photons in the energy range 60–240 MeV. Nucl. Phys. A 539, 263 (1992)

    ADS  Google Scholar 

  177. M.L. Terranova et al., Fission cross section and fissility of by 60–270 MeV tagged photons. J. Phys. G: Nucl. Part. Phys. 22, 1661 (1996)

    ADS  CAS  Google Scholar 

  178. V.N. Litvinenko et al., Gamma-ray production in a storage ring free-electron laser. Phys. Rev. Lett. 78, 4569 (1997)

    ADS  CAS  Google Scholar 

  179. A. Zilges et al., Photonuclear reactions—from basic research to applications. Prog. Part. Nucl. Phys. 122, 103903 (2022)

    CAS  Google Scholar 

  180. J.M. Mueller et al., Measurement of prompt neutron polarization asymmetries in photofission of \(^{235,238}\)U, \(^{239}\)Pu, and \(^{232}\)Th. Phys. Rev. C 85, 014605 (2012)

    ADS  Google Scholar 

  181. J.M. Mueller et al., Prompt neutron polarization asymmetries in photofission of \(^{232}\)Th, \(^{233,235,238}\)U, \(^{237}\)Np, and \(^{239,240}\)Pu. Phys. Rev. C 89, 034615 (2014)

    ADS  Google Scholar 

  182. J.A. Silano, H.J. Karwowski, Near-barrier photofission in \(^{232}\)Th and \(^{238}\)U. Phys. Rev. C 98, 054609 (2018)

    ADS  CAS  Google Scholar 

  183. L. Csige et al., Exploring the multihumped fission barrier of \(^{238}\)U via sub-barrier photofission. Phys. Rev. C 87, 044321 (2013)

    ADS  Google Scholar 

  184. Krishichayan et al., Photofission cross-section ratio measurement of \(^{235}\)U/\(^{238}\)U using monoenergetic photons in the energy range of 9.0–16.6 MeV. Nucl. Instrum. Methods Phys. Res. Sect. A 854, 40 (2017)

    ADS  CAS  Google Scholar 

  185. Krishichayan et al., Monoenergetic photon-induced fission cross-section ratio measurements for \(^{235}\)U, \(^{238}\)U, and \(^{239}\)Pu from 9 to 17 MeV. Phys. Rev. C 98, 014608 (2018)

    ADS  CAS  Google Scholar 

  186. Krishichayan et al., Fission product yield measurements using monoenergetic photon beams. Phys. Rev. C 100, 014608 (2019)

    ADS  CAS  Google Scholar 

  187. M. Bhike et al., Exploratory study of fission product yield determination from photofission of \(^{239}\)Pu at 11 MeV with monoenergetic photons. Phys. Rev. C 95, 024608 (2017)

    ADS  Google Scholar 

  188. R. Bernabei et al., Photofission cross-section of \(^{238}\)U in the quasi-deuteron region. Nuovo Cimento A 100, 131 (1988)

    ADS  Google Scholar 

  189. V. Bellini et al., Photofission cross-section for \(^{238}\)U by (120–280) MeV quasi-monochromatic photons. Nuovo Cimento A 85, 75 (1985)

    ADS  Google Scholar 

  190. J.B. Martins et al., Absolute photofission cross section of \(^{197}\)Au, \(^{nat}\)Pb, \(^{209}\)Bi, \(^{232}\)Th, \(^{238}\)U, and \(^{235}\)U nuclei by 69-MeV monochromatic and polarized photons. Phys. Rev. C 44, 354 (1991)

    ADS  CAS  Google Scholar 

  191. O.A.P. Tavares et al., Fission of complex nuclei induced by 52-MeV monochromatic and polarized photons. Phys. Rev. C 44, 1683 (1991)

    ADS  CAS  Google Scholar 

  192. V. Bellini et al., Fission of Bi induced by a quasi-monochromatic photon beam at energies from 100 to 280 MeV. Lettere al Nuovo Cimento 36, 587 (1983)

    CAS  Google Scholar 

  193. C. Guaraldo et al., Photoexcitation mechanisms and photofission cross section for Bi by 100–300 MeV quasi-monochromatic photons. Phys. Rev. C 36, 1027 (1987)

    ADS  CAS  Google Scholar 

  194. V. Lucherini et al., Au photofission cross section by quasimonochromatic photons in the intermediate energy region. Phys. Rev. C 39, 911 (1989)

    ADS  CAS  Google Scholar 

  195. J.B. Martins et al., Nuclear fission of \(^{197}\)Au, \(^{nat}\)Pb and \(^{209}\)Bi induced by polarized and monochromatic photons of 60 and 64 MeV. Nuovo Cimento A 101, 789 (1989)

    ADS  Google Scholar 

  196. O.A.P. Tavares et al., Fission induced in \(^{nat}\)Ta, \(^{nat}\)W and \(^{nat}\)Pt targets by 69 MeV monochromatic photons. J. Phys. G: Nucl. Part. Phys. 19, 805 (1993)

    ADS  CAS  Google Scholar 

  197. O.A.P. Tavares et al., Fission of \(^{27}\)Al nucleus by 69 MeV monochromatic photons. J. Phys. G: Nucl. Part. Phys. 19, 2145 (1993)

    ADS  CAS  Google Scholar 

  198. M.L. Terranova et al., Fission yields of \(^{209}\)Bi and \(^{nat}\)Pb nuclei induced by photon beams of 226 MeV maximum energy from compton backscattered laser light. Nuovo Cimento A 105, 197 (1992)

    ADS  Google Scholar 

  199. M.L. Terranova et al., Fissility of Bi, Pb, Au, Pt, W, Ta, V and Ti nuclei measured with 100 MeV Compton backscattered photons. J. Phys. G: Nucl. Part. Phys. 22, 511 (1996)

    ADS  CAS  Google Scholar 

  200. M.L. Terranova et al., Photofission cross section and fissility of pre-actinide and intermediate-mass nuclei by 120 and 145 MeV Compton backscattered photons. J. Phys. G: Nucl. Part. Phys. 24, 205 (1998)

    ADS  CAS  Google Scholar 

  201. O.A.P. Tavares et al., Photofission of \(^{27}\)Al nucleus in the quasi-deuteron region of photonuclear absorption. J. Phys. G Nucl. Part. Phys. 25, 1979 (1999)

    ADS  CAS  Google Scholar 

  202. H.R. Bowman et al., Electron-induced fission in U\(^{238}\), Bi\(^{209}\), and Ta\(^{181}\). Phys. Rev. 168, 1396 (1968)

    ADS  CAS  Google Scholar 

  203. J.D.T. Arruda-Neto et al., E2 giant resonances and an M1 component in the photofission of \(^{236}\)U. Phys. Rev. C 22, 1996 (1980)

    ADS  CAS  Google Scholar 

  204. M. Harakeh, A review of the fission decay of the giant resonances in the actinide region. Journal de Physique, Colloque 45(C4), 155 (1984)

    Google Scholar 

  205. U. Kneissl, G. Kuhl, A. Weller, Indications of E2 admixtures in the electro-fission of uranium. Phys. Lett. B 49, 440 (1974)

    ADS  CAS  Google Scholar 

  206. U. Kneissl et al., Search for E2 strength in electrofission of \(^{238}\)U and \(^{232}\)Th. Nucl. Phys. A 256, 11 (1976)

    ADS  Google Scholar 

  207. A.C. Shotter et al., The E1 and E2 strength in the electrofission of some heavy elements. Nucl. Phys. A 290, 55 (1977)

    ADS  Google Scholar 

  208. J.D.T. Arruda-Neto et al., Concentration of E2 strength near the fission barrier of \(^{232}\)Th. Phys. Rev. C 25, 1689 (1982)

    ADS  CAS  Google Scholar 

  209. J.D.T. Arruda-Neto, W. Rigolon, S.B. Herdade, Evidences for the statistical fission decay of the Giant Quadrupole Resonance of \(^{232}\)Th. Phys. Scrip. 35, 427 (1987)

    ADS  CAS  Google Scholar 

  210. J.D.T. Arruda-Neto et al., Electrofission of \(^{233}\)U. Phys. Scrip. 40, 735 (1989)

    ADS  CAS  Google Scholar 

  211. J.D.T. Arruda-Neto et al., Fission decay of the giant quadrupole resonance for \(^{234}\)U. Phys. Rev. C 23, 2595 (1981)

    ADS  CAS  Google Scholar 

  212. J.D.T. Arruda-Neto et al., Electrofission of \(^{234}\)U, \(^{236}\)U and \(^{238}\)U: angular distributions and E2 strength functions. Nucl. Phys. A 389, 378 (1982)

    ADS  Google Scholar 

  213. J.D.T. Arruda-Neto, S.B. Herdade, B.L. Berman, Observation of M1 strength in the photofission of actinide nuclei. J. Phys. G: Nucl. Part. Phys. 12, 105 (1986)

    ADS  CAS  Google Scholar 

  214. J.D.T. Arruda-Neto et al., Non-electric-dipole photofission of \(^{235}\)U. J. Phys. G: Nucl. Part. Phys. 11, 649 (1985)

    ADS  CAS  Google Scholar 

  215. J.D.T. Arruda-Neto et al., Determination of the giant E2 isoscalar resonance for \(^{236}\)U. Lettere al Nuovo Cimento 26, 487 (1979)

    CAS  Google Scholar 

  216. J.D.T. Arruda-Neto et al., E2 giant resonances and an M1 component in the photofission of \(^{236}\)U. Phys. Rev. C 22, 1996 (1980)

    ADS  CAS  Google Scholar 

  217. J.D.T. Arruda Neto et al., Electric quadrupole giant resonance in the photofission of \(^{238}\)U. Phys. Rev. C 18, 863 (1978)

    ADS  CAS  Google Scholar 

  218. J.D.T. Arruda-Neto, B.L. Herman, Study of electrofission and hadron-induced fission decay of the giant quadrupole resonance of \(^{238}\)U. Nucl. Phys. A 349, 483 (1980)

    ADS  Google Scholar 

  219. J.D.T. Arruda-Neto, S.L. Paschoal, S.B. Herdade, Electrofission of \(^{237}\)Np in the energy range 6–60 MeV. J. Phys. G Nucl. Part. Phys. 14, 373 (1988)

    ADS  CAS  Google Scholar 

  220. J.D.T. Arruda-Neto et al., Electrofission of \(^{239}\)Pu in the energy range 7–12 MeV. Phys. Rev. C 55, 2471 (1997)

    ADS  CAS  Google Scholar 

  221. J. Aschenbach, R. Haag, H. Krieger, Electrofission of \(^{238}\)U and \(^{232}\)Th. Zeitschrift für Physik A 292, 285 (1979)

    ADS  CAS  Google Scholar 

  222. A.S. Voronin et al., Fission of \(^{232}\)Th, \(^{233}\)U, \(^{235}\)U, \(^{236}\)U, \(^{238}\)U, \(^{237}\)Np and \(^{232}\)Pu nuclei induced by 100–275 MeV electrons. Yadernaya Fizika 34, 1439 (1981)

    CAS  Google Scholar 

  223. D. Türck, W. Ziga, H.-G. Clerc, Fission barrier of \(^{209}\)Bi measured by electron induced fission. Phys. Lett. B 49, 335 (1974)

    ADS  Google Scholar 

  224. D. Türck, H.-G. Clerc, W. Ziga, Experimental determination of the fission barriers of lead isotopes. Phys. Lett. B 63, 283 (1976)

    ADS  Google Scholar 

  225. A. Kernohan et al., Electrofission of \(^{206}\)Pb, \(^{207}\)Pb, and \(^{208}\)Pb. Phys. Rev. C 16, 239 (1977)

    ADS  CAS  Google Scholar 

  226. W. Günther et al., Deformation dependence of the pairing strength investigated by electrofission of \(^{182,184,186}\)W. Phys. Rev. Lett. 44, 716 (1980)

    ADS  Google Scholar 

  227. H. Ströher et al., Fission barriers of preactinide nuclei from electrofission experiments. Nucl. Phys. A 419, 295 (1984)

    ADS  Google Scholar 

  228. M.-L. Yoneama et al., Study of the \(^{232}\)Th fission barrier by electron-induced fission. Nucl. Phys. A 604, 263 (1996)

    ADS  Google Scholar 

  229. V.L. Kuznetsov et al., Excitation of the fission isomer \(^{242mf}\)Am by electrons of energy 17.5–78 MeV. Soviet J. Nucl. Phys. 42, 29 (1985)

    CAS  Google Scholar 

  230. J.D.T. Arruda-Neto et al., Evidence for isomeric electron induced fission of \(^{232}\)Th. Phys. Lett. B 248, 34 (1990)

    ADS  CAS  Google Scholar 

  231. P. Rasch, G. Fiedler, E. Konecny, Fragment angular distributions in electron-induced fission of \(^{232}\)Th. Nucl. Phys. A 219, 397 (1974)

    ADS  CAS  Google Scholar 

  232. A.C. Shotter et al., The fission of \(^{235}\)U and \(^{238}\)U induced by electrons in the energy range 30–120 MeV. J. Phys. G: Nucl. Phys. 2, 769 (1976)

    ADS  CAS  Google Scholar 

  233. J.C. McGeorge et al., The mass and kinetic energy distributions in the fission of \(^{238}\)Np, \(^{232}\)Th, \(^{238}\)U, \(^{235}\)U and \(^{209}\)Bi induced by 110 MeV electrons. Nucl. Phys. A 326, 108 (1979)

    ADS  Google Scholar 

  234. D.H. Dowell et al., Coincident electrofission cross section for \(^{238}\)U from 5 to 11.7 MeV. Phys. Rev. Lett. 49, 113 (1982)

    ADS  CAS  Google Scholar 

  235. K.A. Griffioen et al., Coincident electrofission of \(^{238}\)U at \(q\approx \) 0.26, 0.40, and 0.55 \(fm^{-1}\). Phys. Rev. C 34, 1375 (1986)

  236. T. Weber et al., Multipole strength distributions and form factors for E1, E2/E0, and E3 from \(^{238}\)U(e, e’f) coincidence experiments. Phys. Rev. Lett. 59, 2028 (1987)

    ADS  CAS  PubMed  Google Scholar 

  237. H. Ströher et al., Investigation of the fission decay of the isoscalar Giant Quadrupole Resonance in \(^{238}\)U by electron- and positron-induced fission. Phys. Rev. Lett. 47, 318 (1981)

    ADS  Google Scholar 

  238. H. Ströher et al., Absolute cross sections for electron- and positron-induced fission of \(^{238}\)U and tests of DWGA virtual-photon spectra. Nucl. Phys. A 378, 237 (1982)

    ADS  Google Scholar 

  239. T. Weber et al., Determination of the giant E2 isoscalar resonance for \(^{236}\)U. Zeitschrift für Physik A 315, 125 (1984)

    ADS  CAS  Google Scholar 

  240. F. Zamani-Noor, D.S. Onley, Virtual photon theory in electrofission. Phys. Rev. C 33, 1354 (1986)

    ADS  CAS  Google Scholar 

  241. T. Weber et al., Fragment angular distributions in electron- and positron-induced fission of \(^{232}\)Th: A specific test of virtual photon spectra. Nucl. Phys. A 522, 443 (1991)

    ADS  Google Scholar 

  242. V.L. Kuznetsov et al., Electron induced fission of the \(^{238}\)U, \(^{237}\)Np, \(^{239}\)Pu and \(^{243}\)Am nuclei in the energy region 100–1000 MeV. Nucl. Phys. A 381, 472 (1982)

    ADS  Google Scholar 

  243. D.I. Ivanov et al., Prompt and delayed electro- and photofission of \(^{243}\)Am nuclei in the energy region 450–950 MeV. Nucl. Phys. A 485, 668 (1988)

    ADS  Google Scholar 

  244. J.D.T. Arruda-Neto et al., Photoexcitation mechanisms and the fission process of \(^{209}\)Bi from threshold to the \(\Delta \) region. Phys. Rev. C 34, 935 (1986)

    ADS  CAS  Google Scholar 

  245. J.D.T. Arruda-Neto et al., Electrofission of \(^{208}\)Pb in the intermediate energy region. Phys. Rev. C 41, 354 (1990)

    ADS  CAS  Google Scholar 

  246. J.D.T. Arruda-Neto et al., Observation of pion-related effects in the photofission of preactinide nuclei. Phys. Rev. C 48, 1594 (1993)

    ADS  CAS  Google Scholar 

  247. J.D.T. Arruda-Neto et al., Thermalization related effects in the electrofission of preactinide nuclei. Phys. Rev. C 50, 282 (1994)

    ADS  CAS  Google Scholar 

  248. J.D.T. Arruda-Neto et al., Observation of fine thermalization effects in the electrofission of preactinide nuclei. J. Phys. G Nucl. Part. Phys. 20, 197 (1994)

    ADS  CAS  Google Scholar 

  249. J.D.T. Arruda-Neto et al., Photofission of \(^{182}\)W following reabsorption of photopions. Phys. Rev. C 51, 452 (1995)

    ADS  Google Scholar 

  250. A. Deppman, J.D.T. Arruda-Neto, Investigation of low energy pion-nucleus interaction using electrofission data for heavy nuclei at the pion threshold. Eur. Phys. J. A 6, 107 (1999)

    ADS  CAS  Google Scholar 

  251. E.A. Arakelyan et al., Measurement of electrofission cross sections and photofission yields of \(^{235}\)U and \(^{238}\)U in the energy region 1.33–4.32 GeV. Soviet J. Nucl. Phys. 49, 780 (1989)

    Google Scholar 

  252. C.F. von Weizsacker, Ausstrahlung bei stßen sehr schneller elektronen. Zeitschrift für Physik 88, 612 (1934)

    ADS  Google Scholar 

  253. E.J. Williams, Nature of the high energy particles of penetrating radiation and status of ionization and radiation formulae. Phys. Rev. 45, 729 (1934)

    ADS  CAS  Google Scholar 

  254. A. Winther, K. Alder, Relativistic Coulomb excitation. Nucl. Phys. A 319, 518 (1979)

    ADS  Google Scholar 

  255. C.A. Bertulani, G. Baur, Relativistic Coulomb collisions and the virtual radiation spectrum. Nucl. Phys. A 442, 739 (1985)

    ADS  Google Scholar 

  256. R.T. Wheeler, J.W. Norbury, Higher-order corrections to Coulomb fission. Phys. Rev. C 51, 1566 (1995)

    ADS  CAS  Google Scholar 

  257. S. Polikanov et al., Electromagnetic and nuclear fission of \(^{238}\)U in the reaction of 100, 500, and 1000 A\(\cdot \)MeV with \(^{238}\)U. Zeitschrift für Physik 350, 221 (1994)

    ADS  CAS  Google Scholar 

  258. M. Hesse et al., Reaction and fission cross-sections of 750 \(\cdot \)MeV \(^{238}\)U ions on Pb, Cu and Al targets. Zeitschrift für Physik 355, 69 (1996)

    ADS  CAS  Google Scholar 

  259. P. Armbruster et al., Low-energy fission investigated in reactions of 750 A\(\cdot \)MeV\(^{238}\)U-ions with Pb and Be targets: I. Nuclear charge distributions. Zeitschrift für Physik 355, 191 (1996)

    ADS  CAS  Google Scholar 

  260. M. Bernas et al., Identification of more than a 100 new isotopes from \(^{238}\)U projectile fission and beams of neutron-rich nuclei at BRENDA. Nucl. Phys. A 616, 352 (1997)

    ADS  Google Scholar 

  261. C. Donzaud et al., Low-energy fission investigated in reactions of 750 A\(\cdot \)MeV \(^{238}\)U-ions on \(^{208}\)Pb. II: Isotopic distributions. Zeitschrift für Physik 355, 69 (1996)

    ADS  Google Scholar 

  262. D. Pérez-Loureiro et al., Neutron-rich fragments produced by in-flight fission of \(^{238}\)U. Phys. Rev. C 99, 054606 (2019)

    ADS  Google Scholar 

  263. A. Grewe et al., Fission barriers from electromagnetic fission of 430 A\(\cdot \)MeV radioactive ion beams. Nucl. Phys. A 614, 400 (1997)

    ADS  Google Scholar 

  264. J.-F. Martin et al., Studies on fission with ALADIN: precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI. Eur. Phys. J. A 51, 174 (2015)

    ADS  Google Scholar 

  265. E. Pellereau et al., Accurate isotopic fission yields of electromagnetically induced fission of \(^{238}\)U measured in inverse kinematics at relativistic energies. Phys. Rev. C 95, 054603 (2017)

    ADS  Google Scholar 

  266. A. Chatillon et al., Experimental study of nuclear fission along the thorium isotopic chain: from asymmetric to symmetric fission. Phys. Rev. C 99, 054628 (2019)

    ADS  CAS  Google Scholar 

  267. J.-F. Martin et al., Fission-fragment yields and prompt-neutron multiplicity for Coulomb-induced fission of \(^{234,235}\)U and \(^{237,238}\)Np. Phys. Rev. C 104, 044602 (2021)

    ADS  CAS  Google Scholar 

  268. W.B. Christie et al., A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. A 255, 466 (1987)

    ADS  Google Scholar 

  269. A. Chatillon et al., Evidence for a new compact symmetric fission mode in light Thorium isotopes. Phys. Rev. Lett. 124, 202502 (2020)

    ADS  CAS  PubMed  Google Scholar 

  270. A. Chatillon et al., Influence of proton and neutron deformed shells on the asymmetric fission of thorium isotopes. Phys. Rev. C 106, 024618 (2022)

    ADS  CAS  Google Scholar 

  271. O. Frisch, British atomic energy report BR-49 (Atomic Energy Research Establishment, Harwell, 1944)

    Google Scholar 

  272. C. Budtz-Jorgensen et al., A twin ionization chamber for fission fragment detection. Nucl. Instrum. Methods Phys. Res. Sect. A 258, 209 (1987)

    ADS  Google Scholar 

  273. H.W. Schmitt, J.H. Neiler, F.J. Walter, Fragment energy correlation measurements for \(^{252}\)Cf spontaneous fission and \(^{235}\)U thermal-neutron fission. Phys. Rev. 141, 1146 (1966)

    ADS  CAS  Google Scholar 

  274. R.K. Choudhury et al., Use of gridded ionisation chamber for measuring fission fragment angle. Nucl. Instrum. Methods 164, 323 (1979)

    ADS  CAS  Google Scholar 

  275. A. Göök et al., Particle emission angle determination in Frisch grid ionization chambers by electron drift-time measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 621, 401 (2010)

    ADS  Google Scholar 

  276. A. Göök et al., A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments. Nucl. Instrum. Methods Phys. Res. Sect. A 830, 366 (2016)

    ADS  Google Scholar 

  277. S.A. Bennett et al., Development of a novel segmented anode Frisch-grid ionisation chamber for fission measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 951, 162846 (2020)

    CAS  Google Scholar 

  278. R.J.W. Frost, A.G. Smith, A double-Bragg detector with digital signal processing for the event-by-event study of fission in actinide nuclei. Int. J. Modern Phys. Conf. Ser. 44, 1660231 (2016)

    Google Scholar 

  279. S. Gales et al., New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams. Phys. Scrip. 91, 093004 (2016)

    ADS  Google Scholar 

  280. J. Christiansen, Self-quenching parallel-plate vapor counter at voltages below the static breakdown field strength. Zeitschrift für Angewandte Physik 4, 326 (1952)

    Google Scholar 

  281. J. Christiansen et al., Investigation of delayed fission in \(^{236}\)U. Nucl. Phys. A 239, 253 (1975)

    ADS  Google Scholar 

  282. M. Soleilhac, J. Frehaut, J. Gauriau, Energy dependence of \(\nu _p\) for neutron-induced fission of \(^{235}\)U, \(^{238}\)U and \(^{239}\)Pu from 1.3 to 15 MeV. J. Nucl. Energy 23, 257 (1969)

    CAS  Google Scholar 

  283. C.Y. Wu et al., A multiple parallel-plate avalanche counter for fission-fragment detection. Nucl. Instrum. Methods Phys. Res. Sect. A 794, 76 (2015)

    ADS  CAS  Google Scholar 

  284. G. Charpak et al., The use of multiwire proportional counters to select and localize charged particles. Nucl. Instrum. Methods 62, 262 (1968)

    ADS  Google Scholar 

  285. G. Charpak, F. Sauli, Multiwire proportional chambers and drift chambers. Nucl. Instrum. Methods 162, 405 (1979)

    ADS  CAS  Google Scholar 

  286. J. Van der Plicht, A. Gavron, A two-dimensional position-sensitive MWPC for fission fragments. Nucl. Instrum. Methods Phys. Res. 211, 403 (1983)

    ADS  Google Scholar 

  287. A. Breskin et al., Low-pressure multistep detector for very low energy heavy ions. Nucl. Instrum. Methods Phys. Res. 221, 363 (1984)

    ADS  CAS  Google Scholar 

  288. R. Chechik et al., Thick GEM-like hole multipliers: properties and possible applications. Nucl. Instrum. Methods Phys. Res. Sect. A 535, 303 (2004)

    ADS  CAS  Google Scholar 

  289. C.K. Shalem et al., Advances in thick GEM-like gaseous electron multipliers - Part I: athmosperic pressure operation. Nucl. Instrum. Methods Phys. Res. Sect. A 558, 475 (2006)

    ADS  CAS  Google Scholar 

  290. C.K. Shalem et al., Advances in thick GEM-like gaseous electron multipliers–Part II: low-pressure operation. Nucl. Instrum. Methods Phys. Res. Sect. A 558, 468 (2006)

    ADS  CAS  Google Scholar 

  291. C. Bhatia et al., Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A 757, 7 (2014)

    ADS  CAS  Google Scholar 

  292. J.A. Grundl et al., Measurement of absolute fission rates. Nucl. Technol. 25, 237 (1975)

    ADS  CAS  Google Scholar 

  293. O.U. Anders, Determination of fluorine by neutron activation. Anal. Chem. 32, 1368 (1960)

    CAS  Google Scholar 

  294. O. Brandstädter et al., Eine schnelle transportautomatik zur untersuchung kurzlebiger kernzustände bis in den millisekunden-bereich. Nucl. Instrum. Methods 104, 45 (1972)

    ADS  Google Scholar 

  295. S.W. Finch et al., Development of a rapid-transit system for precision nuclear physics measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 1025, 166127 (2022)

    CAS  Google Scholar 

  296. R.E. Pywell et al., Light output response of BC-505 liquid scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 565, 725 (2006)

    ADS  CAS  Google Scholar 

  297. I.A. Pawelczak et al., Studies of neutron-\(\gamma \) pulse shape discrimination in EJ-309 liquid scintillator using charge integration method. Nucl. Instrum. Methods Phys. Res. Sect. A 711, 21 (2013)

    ADS  CAS  Google Scholar 

  298. P.-A. Söderström et al., ELIGANT-GN - ELI gamma above neutron threshold: the gamma-neutron setup. Nucl. Instrum. Methods Phys. Res. Sect. A 1027, 166171 (2022)

    Google Scholar 

  299. L.M. Bollinger, G.E. Thomas, R.J. Ginther, Neutron detection with glass scintillators. Nucl. Instrum. Methods 17, 97 (1962)

    ADS  CAS  Google Scholar 

  300. M. Mayer et al., Development and characterization of a neutron detector based on a lithium glass-polymer composite. Nucl. Instrum. Methods Phys. Res. Sect. A 785, 117 (2015)

    ADS  CAS  Google Scholar 

  301. K.D. Ianakiev et al., Neutron detector based on particles of 6Li glass scintillator dispersed in organic lightguide matrix. Nucl. Instrum. Methods Phys. Res. Sect. A 784, 189 (2015)

    ADS  CAS  Google Scholar 

  302. M.P. Hehlen et al., Light propagation in a neutron detector based on 6Li glass scintillator particles in an organic matrix. J. Appl. Phys. 124, 124502 (2018)

    ADS  Google Scholar 

  303. N. Zaitseva et al., Pulse shape discrimination with lithium-containing organic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A 729, 747 (2013)

    ADS  CAS  Google Scholar 

  304. C.-L. Wang, R.A. Riedel, Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods. Rev. Sci. Instrum. 87, 013301 (2016)

    ADS  CAS  PubMed  Google Scholar 

  305. F. Camera et al., Gamma above the neutron threshold experiments at ELI-NP. Roman. Rep. Phys. 68, 539 (2016)

    Google Scholar 

  306. M. Krzysiek et al., Simulation of the ELIGANT-GN array performances at ELI-NP for gamma beam energies larger than neutron threshold. Nucl. Instrum. Methods Phys. Res. Sect. A 916, 257 (2019)

    ADS  CAS  Google Scholar 

  307. P.-A. Söderström et al., Unfolding of sparse high-energy \(\gamma \)-ray spectra from LaBr\(_3\): Ce detectors. J. Instrum. 14, 11007 (2019)

    Google Scholar 

  308. R. Malone, Private communication (2022)

  309. Y.M. Tsipenyuk et al., Quantum effects in low-energy photofission of heavy nuclei. Soviet Phys. Uspekhi 27, 649 (1984)

    ADS  Google Scholar 

  310. C.D. Bowman, A shelf in the “subthreshold’’ photofission cross section. Phys. Rev. C 12, 856 (1975)

    ADS  CAS  Google Scholar 

  311. J. Drexler et al., The “isomeric shelf’’ in the deep subbarrier photofission of \(^{238}\)U. Nucl. Phys. A 437, 253 (1985)

    ADS  Google Scholar 

  312. A. Manfredini et al., Results on the cross-section of \(^{238}\)U-fission induced by low-energy monoenergetic \(\gamma \)-rays. Il Nuovo Cimento B 44, 218 (1966)

    ADS  CAS  Google Scholar 

  313. L.P. Geraldo et al., Photofission cross sections for \(^{237}\)Np in the energy interval from 5.27 to 10.83 MeV. Nucl. Sci. Eng. 136, 357 (2000)

    ADS  CAS  Google Scholar 

  314. J.D.T. Arruda-Neto et al., Role of transitional levels in \(^{237}\)Np(\(\gamma , f\)): perspectives for studying highly deformed systems. Phys. Rev. C 74, 034324 (2006)

    ADS  Google Scholar 

  315. A.S. Soldatov, Cross sections for the photofission of \(^{243}\)Cm, \(^{245}\)Cm, \(^{249}\)Bk, and \(^{249}\)Cf isotopes in the energy range from the threshold to 10–12 MeV. Phys. Atom. Nucl. 66, 547 (2003)

    ADS  CAS  Google Scholar 

  316. V.M. Strutinsky, “Shell’’ effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420 (1967)

    ADS  Google Scholar 

  317. V.M. Strutinsky, Shells in deformed nuclei. Nucl. Phys. A 122, 1 (1968)

    ADS  Google Scholar 

  318. B. Tamain et al., Search for bremsstrahlung-induced fission isomers of \(^{238}\)U and \(^{239}\)Pu. Nucl. Phys. A 113, 465 (1971)

    ADS  Google Scholar 

  319. V.L. Kuznetsov et al., Yields and cross sections of the \(^{241}\)Am(\(\gamma \), n)\(^{240mf}\)Am and \(^{241}\)Am(\(\gamma ,\alpha )^{242mf}\)Am reactions in the E1 Giant Resonance Region. Nucl. Phys. A 324, 29 (1979)

    ADS  Google Scholar 

  320. A.S. Soldatov et al., Photofission of \(^{231}\)Pa in the threshold region. Soviet J. Nucl. Phys. 46 (1987)

  321. O.Y. Mafra et al., Intermediate structure in the photoneutron and photofission cross sections in \(^{238}\)U and \(^{232}\)Th. Nucl. Phys. A 186, 110 (1972)

    ADS  CAS  Google Scholar 

  322. G.N. Smirenkin, A.S. Soldatov, Cross section for \(^{232}\)Th photofission in the threshold region. Phys. Atom. Nucl. 59, 185 (1996)

    ADS  Google Scholar 

  323. L.J. Lindgren, A.S. Soldatov, Y.M. Tsipenyuk, Sub-barrier photofission of \(^{234}\)U. Soviet J. Nucl. Phys. 32(2) (1980)

  324. A.S. Soldatov, A.I. Blokhin, A.V. Ignatyuk, A.N. Storozhenko, Cross section for \(^{234}\)U photofission in the energy region 5–9 MeV. Phys. Atom. Nucl. 61(8), 1325 (1998)

    ADS  Google Scholar 

  325. A.S. Soldatov, G.N. Smirenkin, Yield and cross section for fission of odd nuclei by \(\gamma \) rays with energies up to 11 MeV. Phys. Atom. Nucl. 55, 1757 (1992)

    Google Scholar 

  326. A.S. Soldatov et al., Detailed measurements of the \(^{237}\)Np photofission cross section near the threshold. Phys. Atom. Nucl. 56(10), 1307 (1993)

    ADS  Google Scholar 

  327. N.S. Rabotnov et al., Photofission of Th\(^{232}\), U\(^{238}\), Pu\(^{238}\), Pu\(^{240}\), Pu\(^{242}\) and the Structure of the Fission Barrier. Soviet J. Nucl. Phys. 11, 285 (1970)

    Google Scholar 

  328. A.I. Blokhin, A.S. Soldatov, Analysis of the cross section for \(^{232}\)Th photofission in the subbarrier energy region. Phys. Atom. Nucl. 72, 917 (2009)

    ADS  CAS  Google Scholar 

  329. C.D. Bowman, G.F. Auchampaugh, S.C. Fultz, Photodisintegration of U\(^{235}\). Phys. Rev. 133, 676 (1964)

    ADS  CAS  Google Scholar 

  330. A. Veyssière et al., A study of the photofission and photoneutron processes in the giant dipole resonance of \(^{232}\)Th, \(^{238}\)U and \(^{237}\)Np. Nucl. Phys. A 199, 45 (1973)

    ADS  Google Scholar 

  331. J.T. Caldwell et al., Experimental determination of photofission neutron multiplicities for \(^{235}\)U, \(^{236}\)U, \(^{238}\)U, and \(^{232}\)Th using monoenergetic photons. Nucl. Sci. Eng. 73, 153 (1980)

    ADS  CAS  Google Scholar 

  332. B.L. Berman et al., Photofission and photoneutron cross sections and photofission neutron multiplicities for \(^{233}\)U, \(^{234}\)U, \(^{237}\)Np, and \(^{239}\)Pu. Phys. Rev. C 34, 2201 (1986)

    ADS  CAS  Google Scholar 

  333. I.S. Koretskaya et al., Photofission cross sections for the \(^{241}\)Am and \(^{243}\)Am nuclei in region of the E1 giant resonance. Yadernaya Fizika 30, 910 (1979)

    CAS  Google Scholar 

  334. D. Filipescu et al., Photofission and photoneutron cross sections for \(^{238}\)U and \(^{232}\)Th. EPJ Web Conf. 284, 04010 (2023)

    CAS  Google Scholar 

  335. K. Horikawa et al., Measurements for the energy and flux of laser Compton scattering \(\gamma \)-ray photons generated in an electron storage ring: NewSUBARU. Nucl. Instrum. Methods Phys. Res. Sect. A 618, 209 (2010)

    ADS  CAS  Google Scholar 

  336. O.Y. Mafra et al., The \(^{232}\)Th(\(\gamma \), n)\(^{231}\)Th cross section near threshold. Nucl. Phys. A 236, 1 (1974)

    ADS  Google Scholar 

  337. M. Sin et al., Modeling photon-induced reactions on \(^{233-238}\)U actinide targets. Phys. Rev. C 103, 054605 (2021)

    ADS  CAS  Google Scholar 

  338. G. Bernardini, R. Reitz, E. Segrè, Photomesonic fission of bismuth. Phys. Rev. 90, 573 (1953)

    ADS  CAS  Google Scholar 

  339. H. Ries et al., Absolute photofission cross sections of \(^{235,238}\)U measured with tagged photons between 40 and 105 MeV. Phys. Lett. B 139, 254 (1984)

    ADS  Google Scholar 

  340. T.H. Bauer et al., The hadronic properties of the photon in high-energy interactions. Rev. Mod. Phys. 50, 261 (1978)

    ADS  CAS  Google Scholar 

  341. N. Bianchi et al., Shadowing in nuclear photoabsorption above the resonance region. Phys. Rev. C 60, 064617 (1999)

    ADS  Google Scholar 

  342. A. Leprêtre et al., Measurements of the total photonuclear cross sections from 30 MeV to 140 MeV for Sn, Ce, Ta, Pb and U nuclei. Nucl. Phys. A 367, 237 (1981)

    ADS  Google Scholar 

  343. V. Bellini et al., Fission of \(^{238}\)U from 100 MeV to 1000 MeV by a coherent photon beam. Nuovo Cimento A 55, 182 (1980)

    ADS  Google Scholar 

  344. N. Bianchi et al., Measurement of the total cross section for \(^{238}\)U photofission in the nucleon resonance region. Phys. Lett. B 299, 219 (1993)

    ADS  CAS  Google Scholar 

  345. C. Patrignani et al., Review of particle physics. Chin. Phys. C 40, 100001 (2016)

    ADS  Google Scholar 

  346. E.V. Minarik, V.A. Novikov, Fission of U, Th, Bi and Tl induced by high energy \(\gamma \)-quanta. Soviet Phys. - JETP 5 (1957)

  347. Y. Wakuta, Fission of U and Th by gamma rays from 200 MeV to 1150 MeV. J. Phys. Soc. Jpn. 31, 12 (1971)

    ADS  CAS  Google Scholar 

  348. R.C. Carrasco, E. Oset, Interaction of real photons with nuclei from 100 to 500 MeV. Nucl. Phys. A 536, 445 (1992)

    ADS  Google Scholar 

  349. N. Bianchi et al., Photofissility of \(^{232}\)Th measured with tagged photons from 250 to 1200 MeV. Phys. Rev. C 48, 1785 (1993)

    ADS  CAS  Google Scholar 

  350. T. Frommhold et al., Photofission of \(^{235}\)U and \(^{238}\)U at intermediate energies: absolute cross sections and fragment mass distributions. Zeitschrift für Physik A Hadrons and Nuclei 350, 249 (1994)

    ADS  CAS  Google Scholar 

  351. E.V. Minarik, V.A. Novikov, High energy gamma ray beams from Compton backscattered laser light. Soviet Phys. - JETP 5, 253 (1975)

    Google Scholar 

  352. J.S. Levinger, Modified quasi-deutron model. Phys. Lett. B 82, 181 (1979)

    ADS  Google Scholar 

  353. O.A.P. Tavares, M.L. Terranova, Nuclear photoabsorption by quasi-deuterons and an updated evaluation of Levinger’s constant. J. Phys. G Nucl. Part. Phys. 18, 521 (1992)

    ADS  CAS  Google Scholar 

  354. M.L. Terranova, D.A. de Lima, J.D. Pinheiro Filho, Evaluation of total nuclear photoabsorption cross-sections by the modified quasi-deuteron model. Europhys. Lett. 9, 523 (1989)

    ADS  Google Scholar 

  355. E.J. Winhold, P.T. Demos, I. Halpern, The angular distribution of fission fragments in the photofission of Thorium. Phys. Rev. 87, 1139 (1952)

    ADS  CAS  Google Scholar 

  356. A. Bohr, To the theory of nuclear fission. Proc. Int. Conf. Peaceful Uses Atomic Energy Geneva 2, 151 (1956)

    CAS  Google Scholar 

  357. R. Ratzek et al., Photofission with linearly polarized photons. Zeitschrift für Physik A Atoms and Nuclei 308, 63 (1982)

    ADS  CAS  Google Scholar 

  358. A.P. Baerg et al., The angular distribution of photofission fragments. Canad. J. Phys. 37(12), 1418 (1959)

    ADS  CAS  Google Scholar 

  359. N.S. Rabotnov et al., Photofission angular anisotropy and the parity of the ground state of \(^{239}\)Pu. Nucl. Phys. 77, 92 (1966)

    CAS  Google Scholar 

  360. A.S. Soldatov, Y.M. Tsipenyuk, G.N. Smirenkin, Angular anisotropy of photofission of Pu\(^{239}\). Soviet J. Nucl. Phys. 11, 552 (1970)

    Google Scholar 

  361. L.P. Geraldo, Angular distribution of the photofission fragments of \(^{237}\)Np at threshold energy. J. Phys. G: Nucl. Phys. 12, 1423 (1986)

    ADS  CAS  Google Scholar 

  362. A.S. Soldatov et al., Quadrupole fission of U\(^{238}\). Phys. Lett. 14, 217 (1965)

    ADS  CAS  Google Scholar 

  363. E.J. Winhold, I. Halpern, Anisotropic photofission. Phys. Rev. 103, 990 (1956)

    ADS  CAS  Google Scholar 

  364. B. Forkman, S.A.E. Johansson, Angular distributions in photofission of uranium. Nucl. Phys. 20, 136 (1960)

    CAS  Google Scholar 

  365. H.G. de Carvalho, A.G. de Silva, J. Goldemberg, Angular distribution of photofission fragments from uranium. Il Nuovo Cimento 19, 1131 (1961)

    ADS  Google Scholar 

  366. E. Albertsson, B. Forkman, Angular distributions in photofission of thorium and uranium. Nucl. Phys. 70, 209 (1965)

    CAS  Google Scholar 

  367. N.S. Rabotnov et al., Angular distribution of photofission fragments near threshold. Phys. Lett. B 26, 218 (1968)

    ADS  CAS  Google Scholar 

  368. A. Manfredini et al., Angular distribution of \(^{238}\)U photofission fragments for 12 different mono-energetic \(\gamma \)-rays. Nucl. Phys. A 123, 664 (1969)

    ADS  Google Scholar 

  369. V.E. Zhuchko et al., Angular distributions of photofission fragments of \(^{238}\)U in the region of the isomer shelf. JETP Lett. (USSR) 24, 277 (1976)

    ADS  Google Scholar 

  370. S. Nair et al., Fission-neutron and fragment angular distributions from threshold photofission of \(^{232}\)Th and \(^{238}\)U. J. Phys. G Nucl. Phys. 3, 965 (1977)

    ADS  CAS  Google Scholar 

  371. V.E. Zhuchko et al., Quadrupole photofission of \(^{232}\)Th and role of symmetry of the nucleus in the fission process. JETP Lett. (USSR) 26, 553 (1978)

    ADS  Google Scholar 

  372. V.E. Zhuchko et al., Properties of the angular anisotropy of deep sub-barrier photofission of even-even nuclei. Soviet J. Nucl. Phys. 30, 326 (1979)

    Google Scholar 

  373. L.J. Lindgren, A. Alm, A. Sandell, Photoinduced fission of the doubly even uranium isotopes \(^{234}\)U, \(^{236}\)U, and \(^{238}\)U. Nucl. Phys. A 298, 43 (1978)

    ADS  Google Scholar 

  374. R. Alba et al., Measurements of subthreshold photofission angular distributions of \(^{238}\)U and fission channel analysis. Il Nuovo Cimento A 62, 145 (1981)

    ADS  Google Scholar 

  375. V.E. Rudnikov et al., Angular anisotropy of photofission of even-even nuclei at above-barrier energies. Soviet J. Nucl. Phys. 48(3) (1988)

  376. F. Steiper et al., Mass dependence of fragment angular distributions in the fission of \(^{232}\)Th and \(^{236}\)U induced by polarized photons. Nucl. Phys. A 563, 282 (1993)

    ADS  CAS  Google Scholar 

  377. V.M. Khvastunov et al., Fission of \(^{232}\)Th nuclei by linearly polarized photons. Phys. Atom. Nucl. 57(11) (1994)

  378. V.M. Khvastunov, V.V. Denyak, \(^{236}\)U and \(^{238}\)U fission induced by linearly polarized photons in the region of a giant dipole resonance. Phys. Atom. Nucl. 64, 1269 (2001)

    ADS  CAS  Google Scholar 

  379. V.V. Denyak et al., Mass dependence of azimuthal asymmetry in the fission of \(^{232}\)Th and \(^{233,235,236,238}\)U by polarized photons. Eur. Phys. J. A 49, 1 (2013)

    ADS  Google Scholar 

  380. J. Aschenbach, R. Haag, H. Krieger, Electrofission of \(^{238}\)U and \(^{232}\)Th. Zeitschrift für Physik A Atoms and Nuclei 292, 285 (1979)

    ADS  CAS  Google Scholar 

  381. T. Weber et al., Near barrier fission channels (J\(^{\pi }\), K) in \(^{238}\)U for spins J\(^{\pi }\) = 0\(^+\), 1\(^-\), and 2\(^+\) from (e, e’f) angular correlation measurements. Phys. Lett. B 215, 469 (1988)

    ADS  CAS  Google Scholar 

  382. J.R. Tompkins, Polarized photofission fragment angular distributions of \(^{232}\)Th and \(^{232}\)U. PhD thesis, University of North Carolina at Chapel Hill (2012)

  383. M.J. Fluss et al., Investigation of the Bohr-independence hypothesis for nuclear reactions in the continuum: \(\alpha \)+Co\(^{59}\), \(p\)+Ni\(^{62}\) and \(\alpha \)+Fe\(^{56}\), \(p\)+Cl\(^{59}\). Phys. Rev. C 187, 1449 (1969)

    CAS  Google Scholar 

  384. W. Younes, H.C. Britt, Neutron-induced fission cross sections simulated from \((t, pf)\) results. Phys. Rev. C 67, 024610 (2003)

    ADS  Google Scholar 

  385. J. Silano et al., Comparing fission-product yields from photon-induced fission of \(^{240}\)Pu and neutron-induced fission of \(^{239}\)Pu as a test of the Bohr hypothesis in nuclear fission. EPJ Web Conf. 242, 01008 (2020)

    CAS  Google Scholar 

  386. A. Foley, H. Yang, Short-lived photofission product yields from \(^{238}\)U and \(^{232}\)Th at bremsstrahlung X-ray endpoint energies of 8, 14, and 20 MeV for nuclear forensics isotope production applications. Nucl. Instrum. Methods Phys. Res. Sect. A 1013, 165621 (2021)

    CAS  Google Scholar 

  387. B. Pérot et al., The characterization of radioactive waste: a critical review of techniques implemented or under development at CEA, France. EPJ Nucl. Sci. Technol. 4, 3 (2018)

    ADS  Google Scholar 

  388. C.L. Hollas, D.A. Close, C.E. Moss, Analysis of fissionable material using delayed gamma rays from photofission. Nucl. Instrum. Methods Phys. Res. Sect. B 24–25, 503 (1987)

    ADS  Google Scholar 

  389. M. Delarue et al., New measurements of cumulative photofission yields of \(^{239}\)Pu, \(^{235}\)U and \(^{238}\)U with a 17.5 MeV bremsstrahlung photon beam and progress toward actinide differentiation. Nucl. Instrum. Methods Phys. Res. Sect. A 1040, 167259 (2022)

    CAS  Google Scholar 

  390. F. Carrel et al., New experimental results on the cumulative yields from thermal fission of \(^{235}\)U and \(^{239}\)Pu and from photofission of \(^{235}\)U and \(^{238}\)U induced by bremsstrahlung. IEEE Trans. Nucl. Sci. 58, 2064 (2011)

    ADS  CAS  Google Scholar 

  391. H. Naik et al., Mass distribution in the bremsstrahlung-induced fission of \(^{232}\)Th, \(^{238}\)U and \(^{240}\)Pu. Nucl. Phys. A 853, 1 (2011)

    ADS  Google Scholar 

  392. H. Naik et al., Measurements of fission yield in 8 MeV bremsstrahlung induced fission of \(^{232}\)Th and \(^{238}\)U. J. Radioanal. Nucl. Chem. 299, 127 (2014)

    CAS  Google Scholar 

  393. X. Wen, H. Yang, Photofission product yields of \(^{238}\)U and \(^{239}\)Pu with 22-MeV bremsstrahlung. Nucl. Instrum. Methods Phys. Res. Sect. A 821, 34 (2016)

    ADS  MathSciNet  CAS  Google Scholar 

  394. F. Carrel et al., Identification and differentiation of actinides inside nuclear waste packages by measurement of delayed gammas. IEEE Trans. Nucl. Sci. 57, 2862 (2010)

    ADS  CAS  Google Scholar 

  395. F. Carrel et al., Detection of high-energy delayed gammas for nuclear waste packages characterization. Nucl. Instrum. Methods Phys. Res. Sect. A 652, 137 (2011)

    ADS  CAS  Google Scholar 

  396. E. Simon et al., Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX. Nucl. Instrum. Methods Phys. Res. Sect. A 840, 28 (2016)

    ADS  CAS  Google Scholar 

  397. M. Gmar, J.M. Capdevila, Use of delayed gamma spectra for detection of actinides (U, Pu) by photofission. Nucl. Instrum. Methods Phys. Res. Sect. A 422, 841 (1999)

    ADS  CAS  Google Scholar 

  398. R. Kimura, H. Sagara, S. Chiba, Principle validation of nuclear fuel material isotopic composition measurement method based on photofission reactions. J. Nucl. Sci. Technol. 53, 1978 (2016)

    CAS  Google Scholar 

  399. R. Kimura, H. Sagara, S. Chiba, Applicability study of the photofission based nuclear material isotopic composition measurement method on the Thorium-Uranium system. Energy Proc. 131, 264 (2017)

    CAS  Google Scholar 

  400. K.W. Chin, H. Sagara, C.Y. Han, Application of photofission reaction to identify high-enriched uranium by bremsstrahlung photons. Ann Nucl. Energy 158, 108295 (2021)

    CAS  Google Scholar 

  401. K.W. Chin, R. Kimura, H. Sagara, K. Tanabe, On the numerical method for photofission-based nuclear material isotopic composition estimation in Thorium-Uranium systems. Nucl. Sci. Eng. 196, 852 (2022)

    ADS  Google Scholar 

  402. R. Venkataraman, R.F. Fleming, E.D. McGarry, A measurement-based method to determine the photofission contribution to fission rate. Nucl. Sci. Eng. 126, 314 (1997)

    ADS  CAS  Google Scholar 

  403. S. Essabaa et al., The radioactive beam facility ALTO. Nucl. Instrum. Methods Phys. Res. Sect. B 317, 218 (2013)

    ADS  CAS  Google Scholar 

  404. J. Guillot et al., Development of radioactive beams at ALTO: Part 2. Influence of the UCx target microstructure on the release properties of fission products. Nucl. Instrum. Methods Phys. Res. Sect. B 440, 1 (2019)

    ADS  CAS  Google Scholar 

  405. M. Cheikh Mhamed, A. Zhang, An optimized plasma ion source for difficult ISOL beams. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 107 (2020)

    ADS  CAS  Google Scholar 

  406. F. Ibrahim et al., The ALTO facility at IPN Orsay and study of neutron rich nuclei in the vincinity of \(^{78}\)Ni. Nucl. Phys. A 787, 110 (2007)

    ADS  Google Scholar 

  407. D. Testov et al., The \(^3\)He long-counter TETRA at the ALTO ISOL facility. Nucl. Instrum. Methods Phys. Res. Sect. A 815, 96 (2016)

    ADS  CAS  Google Scholar 

  408. R. Thoër et al., PolarEx, a future facility for on-line nuclear orientation at ALTO multipolarity mixing ratio data analysis. Acta Phys. Polon. B 50, 591 (2019)

    ADS  MathSciNet  Google Scholar 

  409. D.T. Yordanov et al., Instrumentation for high-resolution laser spectroscopy at the ALTO radioactive-beam facility. J. Instrument. 15, 06004 (2020)

    Google Scholar 

  410. K. Tsukada et al., First elastic electron scattering from \(^{132}\)Xe at the SCRIT facility. Phys. Rev. Lett. 118, 262501 (2017)

    ADS  CAS  PubMed  Google Scholar 

  411. K. Tsukada et al., First observation of electron scattering from online-produced radioactive target. Phys. Rev. Lett. 131, 092502 (2023)

    ADS  CAS  PubMed  Google Scholar 

  412. C.A. Bertulani, A. Gade, Nuclear astrophysics with radioactive beams. Phys. Rep. 485, 195 (2010)

    ADS  CAS  Google Scholar 

  413. M. Pfützner et al., Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567 (2012)

    ADS  Google Scholar 

  414. Y. Blumenfeld, T. Nilsson, P. Van Duppen, Facilities and methods for radioactive ion beam production. Phys. Scrip. T152, 014023 (2013)

    ADS  CAS  Google Scholar 

  415. Y.X. Watanabe et al., Pathway for the production of neutron-rich isotopes around the N = 126 shell closure. Phys. Rev. Lett. 115, 172503 (2015)

    ADS  CAS  PubMed  Google Scholar 

  416. K.H. Schmidt et al., Future prospects for secondary-beam production. Nucl. Phys. A 701, 115 (2002)

    Google Scholar 

  417. Evaluated Nuclear Structure Data File (ENSDF). http://www.nndc.bnl.gov/ensdf

  418. U. Köster et al., Progress in ISOL target-ion source systems. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4229 (2008)

    ADS  Google Scholar 

  419. T.M. Mendonca et al., Production and release of ISOL beams from molten fluoride salt targets. Nucl. Instrum. Methods Phys. Res. Sect. B 329, 1 (2014)

    ADS  CAS  Google Scholar 

  420. A. Gottberg et al., Experimental tests of an advanced proton-to-neutron converter at ISOLDE-CERN. Nucl. Instrum. Methods Phys. Res. Sect. B 336, 143 (2014)

    ADS  CAS  Google Scholar 

  421. ISOLDE Yield Database for target types containing Uranium. https://isoyields2.web.cern.ch/YieldDetail.aspx?targetTypeZ=92

  422. ISOLDE Targets and Separators. https://isolde.web.cern.ch/targets-and-separators

  423. J. Sharpe, Nuclear radiation detectors (Wiley, London, 1964)

    Google Scholar 

  424. S. Palestini et al., Space charge in ionization detectors and the NA48 electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. Sect. A 421, 75 (1999)

    ADS  CAS  Google Scholar 

  425. C. Velissaris, A time-dependent solution for the operation of ion chambers in a high-ionization background. Nucl. Instrum. Methods Phys. Res. Sect. A 547, 511 (2005)

    ADS  CAS  Google Scholar 

  426. A. Takamine et al., Space-charge effects in the catcher gas cell of a rf ion guide. Rev. Sci. Instrum. 76, 103503 (2005)

    ADS  Google Scholar 

  427. M. Huyse et al., Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions. Nucl. Instrum. Methods Phys. Res. Sect. B 187, 535 (2002)

    ADS  CAS  Google Scholar 

  428. J.B. Neumayr et al., The ion-catcher device for SHIPTRAP. Nucl. Instrum. Methods Phys. Res. Sect. B 244, 489 (2006)

    ADS  CAS  Google Scholar 

  429. M. Facina, G. Bollen, D.J. Morrissey, Space charge effects on stopped projectile fragment drift in gas. Hyper. Interact. 174, 21 (2007)

    ADS  CAS  Google Scholar 

  430. S. Purushothaman et al., Cryogenic helium as stopping medium for high-energy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4488 (2008)

    ADS  CAS  Google Scholar 

  431. M. Ranjan et al., Design, construction and cooling system performance of a prototype cryogenic stopping cell for the Super-FRS at FAIR. Nucl. Instrum. Methods Phys. Res. Sect. A 770, 87 (2015)

    ADS  CAS  Google Scholar 

  432. P. Constantin et al., Design of the gas cell for the IGISOL facility at ELI-NP. Nucl. Instrum. Methods Phys. Res. Sect. B 397, 1 (2017)

    ADS  CAS  Google Scholar 

  433. Y. Kudryavtsev et al., A gas cell for thermalizing, storing and transporting radioactive ions and atoms. Part I: off-line studies with a laser ion source. Nucl. Instrum. Methods Phys. Res. Sect. B 179, 412 (2001)

    ADS  CAS  Google Scholar 

  434. G. Savard et al., Development and operation of gas catchers to thermalize fusion-evaporation and fragmentation products. Nucl. Instrum. Methods Phys. Res. Sect. B 204, 582 (2003)

    ADS  CAS  Google Scholar 

  435. T. Dickel et al., Conceptional design of a novel next-generation cryogenic stopping cell for the low-energy branch of the super-FRS. Nucl. Instrum. Methods Phys. Res. Sect. B 376, 216 (2016)

    ADS  CAS  Google Scholar 

  436. D. Budker et al., Atomic physics studies at the Gamma Factory at CERN. Annalen der Physik (Berlin) 532, 2000204 (2020)

    ADS  CAS  Google Scholar 

  437. G. Hackman, ARIEL: TRIUMF’s advanced rare isotope laboratory. Acta Physica Polonica B 45, 503 (2014)

    ADS  CAS  Google Scholar 

  438. M.W. Krasny, A. Petrenko, W. Placzek, High-luminosity large hadron collider with laser-cooled isoscalar ion beams. Prog. Part. Nucl. Phys. 114, 103792 (2020)

  439. M.W. Krasny, Gamma factory study group: gamma factory proof-of-principle experiment: letter of intent. CERN-SPSC-2019-031/SPSC-I-253 (2019)

  440. D. Nichita et al., Radioactive ion beam production at the Gamma Factory. Annalen der Physik (Berlin) 534, 2100207 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Cuciuc, A. Kuşoğlu, D. Nichita, A. Rotaru, P.-A. Söderström, A. State, D. Testov, V. Vasilca, and Y. Xu for thoroughly proof-reading this manuscript. This work was supported by the Romanian Ministry of Research, Innovation and Digitalization under the contract PN 23 21 01 06 and by Extreme Light Infrastructure-Nuclear Physics (ELI-NP) Phase II, a project co-financed by the Romanian Government and the European Regional Development Fund the Competitiveness Operational Programme (1/07.07.2016, COP, ID 1334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimiter L. Balabanski or Paul Constantin.

Additional information

Communicated by Calin Alexandru Ur.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanski, D.L., Constantin, P. 80 years of experimental photo-fission research. Eur. Phys. J. A 60, 39 (2024). https://doi.org/10.1140/epja/s10050-024-01264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01264-z

Navigation