Skip to main content
Log in

Magnetic moments of decuplet baryons in asymmetric strange hadronic matter at finite temperature

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present work we study the masses and magnetic moments of decuplet baryons in isospin asymmetric strange hadronic medium at finite temperature using chiral SU(3) quark mean field model. In the strange isospin asymmetric medium, the properties of baryons in chiral SU(3) mean field model are modified through the exchange of scalar fields \(\sigma \), \(\zeta \) and \(\delta \) and the vector fields \(\omega \), \(\rho \) and \(\phi \). The scalar-isovector field \(\delta \) and the vector-isovector field \(\rho \) signifies the finite isospin asymmetry of the medium. We calculate the in-medium constituent quark masses and masses of decuplet baryons in asymmetric strange matter within the chiral SU(3) quark mean field model and use these as input in the constituent chiral quark model to calculate the in-medium magnetic moments of decuplet baryons for different values of isospin asymmetry and strangeness fraction of hot and dense medium. For calculating the magnetic moments of baryons, contributions of valence quarks, quark sea and orbital angular momentum of quark sea are considered in the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Results are presented through figures and tables in the manuscript.]

References

  1. W.R.B. de Araujo et al., Braz. J. Phys. 34, 871 (2004)

    ADS  Google Scholar 

  2. E.J. Hackett-Jones, D.B. Leinweber, A.W. Thomas, Phys. Lett. B 489, 143 (2000)

    ADS  CAS  Google Scholar 

  3. J.G. Contreras, R. Huerta, Revista Mxicana De Fisica 50, 490 (2004)

    ADS  CAS  Google Scholar 

  4. H.E. Jun, D. Yu-Bing, Commun. Theor. Phys. 43, 139 (2005)

    ADS  Google Scholar 

  5. L.K. Sharma, C. Mai, J. Sci. 34, 13 (2007)

    Google Scholar 

  6. S. Sahu, Revista Mxicana De Fisica 48, 48 (2002)

    ADS  CAS  Google Scholar 

  7. M.D. Slaughter, Phys. Rev. D 84, 071303 (2011)

    ADS  Google Scholar 

  8. H. Dahiya, M. Gupta, Phys. Rev. D 67, 114015 (2003)

    ADS  Google Scholar 

  9. J. Dey, M. Dey, A. Iqubal, Phys. Lett. B 477, 125 (2000)

    ADS  Google Scholar 

  10. T.M. Aliev and A. Ozpineci Phys. Rev. D 62, 053012 (2000)

  11. J.J. Aubert et al., European Muon. Phys. Lett. B 123, 275 (1983)

  12. S. Strauch et al., (Jefferson Lab E93–049 Collaboration) Phys. Rev. Lett. 91, 052301 (2003)

  13. M. Paolone et al., Phys. Rev. Lett. 105, 072001 (2010)

    ADS  CAS  PubMed  Google Scholar 

  14. S.P. Malace et al., Phys. Rev. Lett. 106, 052501 (2011)

    ADS  CAS  PubMed  Google Scholar 

  15. M. Sinha, B. Mukhopadhyay, A. Sedrakian, Nucl. Phys. A 898, 43 (2013)

    ADS  CAS  Google Scholar 

  16. A. Rabhi, P.K. Panda, C. Providência, Phys. Rev. C 84, 035803 (2011)

    ADS  Google Scholar 

  17. V. Dexheimer, R. Negreiros, S. Schramm, Eur. Phys. J. A 48, 189 (2012)

    ADS  Google Scholar 

  18. R. Kumar, A. Kumar, Phys. Rev. C 101, 015202 (2020)

    ADS  CAS  Google Scholar 

  19. R. Kumar, R. Chhabra, A. Kumar, Eur. Phys. J. A 56, 278 (2020)

    ADS  CAS  Google Scholar 

  20. P. Parui, S. De, A. Kumar, and A. Mishra, arXiv:2104.05471

  21. A. Mishra and S. P. Misra, Int. J. Mod. Phys. E 30, 2150064 (2021)

  22. A. Mishra, S.P. Misra, Phys. Rev. C 102, 045204 (2020)

  23. A. Mukherjee, S. Ghosh, M. Mandal, S. Sarkar, P. Roy, Phys. Rev. D 98, 056024 (2018)

    ADS  CAS  Google Scholar 

  24. R.M. Aguirre, Phys. Rev. C 100, 065203 (2019)

    ADS  CAS  Google Scholar 

  25. M. umari, A.K. Nucl, Phys. A 1022, 122442 (2022)

    Google Scholar 

  26. V.B. Thapa et al., Particles 3, 660 (2020)

    CAS  Google Scholar 

  27. K.D. Marquez, Phys. Rev. C 106, 035801 (2022)

    ADS  CAS  Google Scholar 

  28. C.Y. Ryu, C.H. Hyun, T.S. Park, S.W. Hong, Phys. Lett. B 674, 122 (2009)

    ADS  CAS  Google Scholar 

  29. C.Y. Ryu, C.H. Hyun, M.K. Cheoun, J. Phys. G 37, 1052002 (2010)

    Google Scholar 

  30. C.Y. Ryu, K.S. Kim, Phys. Rev. C 82, 025804 (2010)

    ADS  Google Scholar 

  31. Z. Rezaei, Int. J. Mod. Phys. E 27, 1850011 (2018)

    ADS  CAS  Google Scholar 

  32. K. Tsushima, Prog. Theor. Exp. Phys., 2022, 043D02 (2022)

  33. G. Ramalho, K. Tsushima, A.W. Thomas, J. Phys. G: Nucl. Part. Phys. 40, 015102 (2013)

    ADS  CAS  Google Scholar 

  34. W.R.B. de Araujo, J.P.B.C. de Melo, K. Tsushima, Nucl. Phys. A 970, 325 (2018)

    ADS  Google Scholar 

  35. H. Singh, A. Kumar, H. Dahiya, Chin. Phys. C 41, 094104 (2017)

    ADS  Google Scholar 

  36. H. Singh, A. Kumar, H. Dahiya, Eur. Phys. J. Plus 134, 128 (2019)

    Google Scholar 

  37. H. Singh, A. Kumar, H. Dahiya, Eur. Phys. J. A 54, 120 (2018)

    ADS  Google Scholar 

  38. H. Singh, A. Kumar, H. Dahiya, Eur. Phys. J. Plus 135, 422 (2020)

    CAS  Google Scholar 

  39. N. Sharma, H. Dahiya, P.K. Chatley, M. Gupta, Phys. Rev. D 81, 0073001 (2010)

    ADS  Google Scholar 

  40. A. Gridhar, H. Dahiya, M. Randhawa, Phys. Rev. D 92, 033012 (2015)

    ADS  Google Scholar 

  41. P. Wang, Z.Y. Zhang, Y.W. Yu, R.K. Su, Q. Song, Nucl. Phys. A 688, 791 (2001)

    ADS  Google Scholar 

  42. W. Ping, Z.Z. Ye, Y.Y. Wen, Commun. Theor. Phys. 36, 71 (2001)

    ADS  Google Scholar 

  43. V. Thakur et al., Phys. Rev. C 106, 045806 (2022)

    ADS  CAS  Google Scholar 

  44. F. Li, B.-J. Cai, Y. Zhou, W.-Z. Jiang, L.-W. Chen, Astro. Phys. J. 929, 183 (2022)

    ADS  Google Scholar 

  45. B. Liu, V. Greco, V. Baran, M. Colonna, M. Di Toro, Phys. Rev. C 65, 045201 (2002)

    ADS  Google Scholar 

  46. J. Bartelski, S. Tatur, Phys. Rev. D 71, 014019 (2005)

    ADS  Google Scholar 

  47. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stocker, W. Greiner, Phys. Rev. C 59, 411 (1999)

    ADS  CAS  Google Scholar 

  48. N. Barik, B.K. Dash, Phys. Rev. D 31, 7 (1985)

    Google Scholar 

  49. N. Barik et al., Phys. Rev. C 88, 015206 (2013)

    ADS  Google Scholar 

  50. T.P. Cheng, L.F. Li, Phys. Rev. D 57, 344 (1998)

    ADS  CAS  Google Scholar 

  51. T.P. Cheng, L.F. Li, Phys. Rev. Lett. 80, 2789 (1998)

    ADS  CAS  Google Scholar 

  52. H.Q. Song, R.K. Su, Phys. Lett. B 358, 179 (1995)

    ADS  CAS  Google Scholar 

  53. D.J. Millener, C.B. Dover, A. Gal, Phys. Rev. C 38, 2700 (2001)

    ADS  Google Scholar 

  54. Y. Yamamoto, H. Bando, J. Zofka, Progr. Theor. Phys. 80, 757 (1988)

    ADS  CAS  Google Scholar 

  55. J. Mares, E. Friedman, A. Gal, B.K. Jennings, Nucl. Phys. A 594, 311 (1995)

    ADS  Google Scholar 

  56. S. Bart et al., Phys. Rev. Lett. 83, 5238 (1999)

    ADS  CAS  Google Scholar 

  57. T. Fukuda et al., KEK E224. Phys. Rev. C 58, 1306 (1998)

    ADS  CAS  Google Scholar 

  58. J. Linde, T. Ohlsson, H. Snellman, Phys. Rev. D 57, 452 (1998)

    ADS  CAS  Google Scholar 

  59. K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

Communicated by Che-Ming Ko.

Appendix

Appendix

The equations of motion for scalar fields \(\sigma \), \(\zeta \) the dilaton field, \(\chi \), scalar iso-vector field, \(\delta \), and, the vector fields \(\omega \), \(\rho \) and \(\phi \) obtained by minimizing the thermodynamic potential are written as (Eq. (22))

$$\begin{aligned} \frac{\partial \Omega }{\partial \sigma }= & {} k_{0}\chi ^{2}\sigma -4k_{1}\left( \sigma ^{2} \, + \, \zeta ^{2} \, + \, \delta ^2\right) \sigma \, - \, 2k_{2}\left( \sigma ^{3} + 3\sigma \delta ^2\right) \nonumber \\ {}{} & {} - 2k_{3}\chi \sigma \zeta \, - \, \frac{\xi }{3}\chi ^{4}\left( \frac{2\sigma }{\sigma ^2-\delta ^2}\right) \nonumber \\ {}{} & {} + \, \frac{\chi ^{2}}{\chi _{0}^{2}}m_{\pi }^{2}f_{\pi } -\left( \frac{\chi }{\chi _{0}}\right) ^{2}m_{\omega }\omega ^{2} \frac{\partial m_{\omega }}{\partial \sigma }\, \nonumber \\ {}{} & {} -\left( \frac{\chi }{\chi _{0}}\right) ^{2}m_{\rho }\rho ^{2} \frac{\partial m_{\rho }}{\partial \sigma }\, + \, \sum _{i} \frac{\partial M_{i}^{*}}{\partial \sigma } \rho _i^s=0,\end{aligned}$$
(34)
$$\begin{aligned} \frac{\partial \Omega }{\partial \zeta }= & {} k_{0}\chi ^{2}\zeta - 4k_{1}\left( \sigma ^{2} \, + \, \zeta ^{2} + \delta ^2\right) \zeta \, - \, 4k_{2}\zeta ^{3} \, - \, k_{3}\chi \sigma ^{2} \ \nonumber \\ {}{} & {} - \, \frac{\xi \chi ^{4}}{3\zeta } \, + \, \frac{\chi ^{2}}{\chi _{0}^{2}} \left( \sqrt{2}m_{K}^{2}f_{K} \, - \, \frac{1}{\sqrt{2}}m_{\pi }^{2}f_{\pi } \right) \nonumber \\ {}{} & {} + \, \sum _{i=\Lambda , \Sigma ^{\pm ,0}, \Xi ^{-,0}} \frac{\partial M_{i}^{*}}{\partial \zeta } \rho _i^s=0,~~~~~ = 0, \end{aligned}$$
(35)
$$\begin{aligned} \frac{\partial \Omega }{\partial \chi }= & {} k_0\chi \left( \sigma ^2+\zeta ^2+\delta ^2\right) -k_3\left( \sigma ^2-\delta ^2\right) \zeta \nonumber \\ {}{} & {} +\frac{2\chi }{\chi _{0}^{2}}\left[ m_{\pi }^{2}f_{\pi }\sigma +\left( \sqrt{2}m_{K}^{2}f_{K} \, - \, \frac{1}{\sqrt{2}}m_{\pi }^{2}f_{\pi } \right) \zeta \right] \nonumber \\{} & {} -\frac{\chi }{\chi _0^2} \left( m_\omega ^2\omega ^2+m_\rho ^2\rho ^2\right) \nonumber \\ {}{} & {} +\left( 4k_4+1+\textrm{ln}\frac{\chi ^4}{\chi _0^4} - \frac{4\xi }{3}\textrm{ln}\left( \left( \frac{\left( \sigma ^2-\delta ^2\right) \zeta }{\sigma _0^2\zeta _0}\right) \right) \right) \chi ^3 =0, \end{aligned}$$
(36)
$$\begin{aligned} \frac{\partial \Omega }{\partial \delta }= & {} k_{0}\chi ^{2}\delta -4k_{1}\left( \sigma ^{2} \, + \, \zeta ^{2} \, + \, \delta ^2\right) \delta \, - \, 2k_{2}\left( \delta ^{3} + 3\sigma ^2\delta \right) \nonumber \\ {}{} & {} + \, 2k_{3}\chi \delta \zeta \, - \, \frac{\xi }{3}\chi ^{4}\left( \frac{2\delta }{\sigma ^2-\delta ^2}\right) \, - \, \sum _{i} g_{\delta i} \rho _i^s=0, \end{aligned}$$
(37)
$$\begin{aligned} \frac{\partial \Omega }{\partial \omega }= & {} \left( \frac{\chi ^2}{\chi _0^2}\right) m_\omega ^2\omega +4g_4 \omega ^3+12g_4\omega \rho ^2-\sum _{i} g_{\omega i} \rho _i=0, \end{aligned}$$
(38)
$$\begin{aligned} \frac{\partial \Omega }{\partial \rho }= & {} \left( \frac{\chi ^2}{\chi _0^2}\right) m_\rho ^2\rho +4g_4 \rho ^3+12g_4\omega ^2\rho -\sum _{i} {g_{\rho i}} \rho _i=0, \end{aligned}$$
(39)

and

$$\begin{aligned} \frac{\partial \Omega }{\partial \phi }= \left( \frac{\chi ^2}{\chi _0^2} \right) m_\phi ^2\phi +8g_4\phi ^3- \sum _{i}g_{\phi \,i}\rho _{i}=0, \end{aligned}$$
(40)

respectively. The number (vector) density, \(\rho _{i}\), and scalar density, \(\rho _{i}^{s}\), of baryons appearing in above equation are given as

$$\begin{aligned} \rho _{i} = \gamma _{i} \int \frac{d^{3}k}{(2\pi )^{3}} \Big (f_i(k)-\bar{f}_i(k) \Big ), \end{aligned}$$
(41)

and

$$\begin{aligned} \rho _{i}^{s} = \gamma _{i} \int \frac{d^{3}k}{(2\pi )^{3}} \frac{m_{i}^{*}}{E^{*}_i(k)} \Big (f_i(k)+\bar{f}_i(k) \Big ), \end{aligned}$$
(42)

respectively, where \(f_i(k)\) and \(\bar{f}_i(k)\) represent the Fermi distribution functions at finite temperature for fermions and anti-fermions and are expressed as

$$\begin{aligned} f_i(k)= & {} \frac{1}{1+\exp \left[ (E^*_{i}(k) -\nu ^{*}_{i})/k_BT \right] }~~~ \text {and} \nonumber \\ \bar{f}_i(k)= & {} \frac{1}{1+\exp \left[ ( E^*_{i}(k) +\nu ^{*}_{i})/k_BT\right] }~. \end{aligned}$$
(43)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Dutt, S. & Dahiya, H. Magnetic moments of decuplet baryons in asymmetric strange hadronic matter at finite temperature. Eur. Phys. J. A 60, 4 (2024). https://doi.org/10.1140/epja/s10050-023-01228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01228-9

Navigation