Skip to main content
Log in

Shell-model studies relevant for the low-energy Coulomb excitation in Zn isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The low-lying nuclear structure of even-even Zn isotopes ranging from \(^{62}\)Zn to \(^{70}\)Zn has been comprehensively examined through large scale shell model calculations. These calculations encompassed the f\(_{5/2}\textrm{p}_{3/2,1/2}\textrm{g}_{9/2}\) (fpg) model space without any truncation, employing \(^{56}\)Ni as an inert core. Two different effective interactions, JUN45 and jj44b, were utilized in these calculations. Various critical observables, including excitation energies, reduced transition strengths, and electric quadrupole moments, were computed and then evaluated in the context of existing experimental data. The configurations of the resulting wave functions were also thoroughly analyzed. Furthermore, occupation probabilities for distinct single-particle orbitals were determined, with particular attention given to the pivotal role of the g\(_{9/2}\) orbital in elucidating the nuclear structure of heavy Zn isotopes. Additionally, rotational invariants were calculated for the ground state, shedding light on a prolate deformation in \(^{62}\)Zn and \(^{64}\)Zn, while suggesting moderate prolate-triaxial excitations in \(^{66}\)Zn, \(^{68}\)Zn, and \(^{70}\)Zn. These findings hold significant relevance for interpreting the intriguing outcomes of sub-barrier Coulomb excitation experiments, offering invaluable insights into the static electromagnetic properties of the nucleus through a model-independent approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical work and all data generated during this study are contained in the article.]

References

  1. M. Rocchini et al., Phys. Rev. C 130, 122502 (2023)

    Google Scholar 

  2. A. Illana et al., Phys. Rev. C 108, 044305 (2023)

  3. A.D. Ayangeakaa et al., Phys. Rev. C 105, 054315 (2022)

  4. F. Nowacki, A. Obertelli, A. Poves, Prog. Part. Nucl. Phys. 105, 054315 (2022)

  5. M. Koizumi et al., Eur. Phys. J. A 18, 87 (2003)

    Article  ADS  Google Scholar 

  6. D.N. Simister et al., J. Phys. G: Nucl. Part. Phys. 4, 1127 (1978)

    Article  ADS  Google Scholar 

  7. A. Gade, H. Klein, N. Pietralla, P. Von Brentano, Phys. Rev. C 65, 054311 (2002)

  8. M. Rocchini et al., Phys. Rev. C 103, 014311 (2021)

  9. J. Henderson et al., Phys. Rev. Lett. 121, 082502 (2018)

  10. J.B. Gupta, J.H. Hamilton, Nucl. Phys. A 983, 20 (2019)

    Article  ADS  Google Scholar 

  11. A.D. Ayangeakaa et al., Phys. Lett. B 754, 254 (2016)

    Article  ADS  Google Scholar 

  12. F.H. Garcia et al., Phys. Rev. Lett. 125, 172501 (2020)

  13. R. Budaca, P. Buganu, A.I. Budaca, Nucl. Phys. A 990, 137 (2019)

    Article  ADS  Google Scholar 

  14. S. Leoni et al., Acta Phys. Pol., B 50, 605 (2019)

    Article  ADS  Google Scholar 

  15. D. Little et al., Phys. Rev. C 106, 044313 (2022)

  16. A. Gade, S.N. Liddick, J. Phys. G Nucl. Part. Phys. 43, 024001 (2016)

  17. F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016)

  18. Y. Toh et al., Eur. Phys. J. A 9, 353 (2000)

    Article  ADS  Google Scholar 

  19. Y. Toh et al., J. Phys. G: Nucl. Part. Phys. 27, 1475 (2001)

    Article  ADS  Google Scholar 

  20. B. Kotliński et al., Nucl. Phys. A 519, 646 (1990)

    Article  ADS  Google Scholar 

  21. A.E. Kavka et al., Nucl. Phys. A 593, 177 (1995)

    Article  ADS  Google Scholar 

  22. N. J. Abu Awwad, H. Abusara, S. Ahmad, Phys. Rev. C 101, 064322 (2020)

  23. O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002)

  24. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  25. J. Leske et al., Phys. Rev. C 71, 034303 (2005)

  26. J. Leske et al., Phys. Rev. C 73, 064305 (2006)

  27. K. Moschner et al., Phys. Rev. C 82, 014301 (2010)

  28. O. Kenn et al., Phys. Rev. C 65, 034308 (2002)

  29. D. Mücher et al., Phys. Rev. C 79, 054310 (2009)

  30. S. Rai, A. Biswas, B. Mukherjee, Int. J. Mod. Phys. E 25, 1650099 (2016)

    Article  ADS  Google Scholar 

  31. E. Clément et al., Phys. Rev. C 75, 054313 (2007)

  32. E. Clément et al., Phys. Rev. Lett. 116, 022701 (2016)

  33. A. Görgen, W. Korten, J. Phys. G Nucl. Part. Phys. 43, 024002 (2016)

  34. L.P. Gaffney et al., Nature 497, 199 (2013)

    Article  ADS  Google Scholar 

  35. P.A. Butler et al., Phys. Rev. Lett. 124, 042503 (2020)

  36. C. Morse et al., Phys. Rev. C 102, 054328 (2020)

  37. L. Morrison et al., Phys. Lett. B 838, 137675 (2023)

  38. K. Hadyńska-Klȩk et al., Phys. Rev. Lett. 117, 062501 (2016)

  39. D. Cline, Annu. Rev. of Nucl. Part. Sci. 36, 683 (1986)

    Article  ADS  Google Scholar 

  40. K. Kumar, Phys. Rev. Lett. 28, 249 (1972)

    Article  ADS  Google Scholar 

  41. K. Wrzosek-Lipska et al., Phys. Rev. C 86, 064305 (2012)

  42. K. Wrzosek-Lipska, L.P. Gaffney, J. Phys. G Nucl. Part. Phys. 43, 024012 (2016)

  43. T. Schmidt, K.L.G. Heyde, A. Blazhev, J. Jolie, Phys. Rev. C 96, 014302 (2017)

  44. J. Henderson, Phys. Rev. C 102, 054306 (2020)

  45. M. Honma, T. Otsuka, T. Mizusaki, M. Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009)

  46. B.A. Brown, unpublished, see also endnote (28) in B. Cheal et al., Phys. Rev. Lett. 104, 252502 (2010)

  47. N. Shimizu, T. Mizusaki, Y. Utsuno, Y. Tsunoda, Comput. Phys. Commun. 244, 372 (2019)

    Article  ADS  Google Scholar 

  48. B.A. Brown, W.D.M. Rae, Nucl. Data Sheets 120, 115 (2014)

    Article  ADS  Google Scholar 

  49. B.A. Brown et al., Michigan State University Cyclotron Laboratory Report 524, (1988)

  50. B.A. Brown et al., MSU-NSCL report no. 1289 (2004)

  51. E. Caurier, F. Nowacki, Acta Phys. Pol., B 30, 705 (1999)

    ADS  Google Scholar 

  52. E. Caurier et al., Phys. Rev. C 59, 2033 (1999)

    Article  ADS  Google Scholar 

  53. C.W. Johnson, W.E. Ormand, P.G. Krastev, Comput. Phys. Commun. 184, 2761 (2013)

    Article  ADS  Google Scholar 

  54. C.W. Johnson, W.E. Ormand, K.S. McElvain, H. Shan (2018). arXiv preprint arXiv:1801.08432

  55. M. Shao et al., Comput. Phys. Commun. 222, (2018)

  56. A.L. Nichols, B. Singh, J.K. Tuli, Nucl. Data Sheets 113, 973 (2012)

    Article  ADS  Google Scholar 

  57. B. Singh, J. Chen, Nucl. Data Sheets 178, 41 (2021)

    Article  ADS  Google Scholar 

  58. E. Browne, J.K. Tuli, Nucl. Data Sheets 111, 1093 (2010)

    Article  ADS  Google Scholar 

  59. E.A. McCutchan, Nucl. Data Sheets 113, 1735 (2012)

    Article  ADS  Google Scholar 

  60. G. Gürdal, E.A. Mccutchan, Nucl. Data Sheets 136, 1 (2016)

    Article  Google Scholar 

  61. S. Mukhopadhyay et al., Phys. Rev. C 95, 014327 (2017)

  62. U.S. Ghosh et al., Phys. Rev. C 100, 034314 (2019)

  63. K. Starosta et al., Phys. Rev. Lett. 99, 042503 (2007)

  64. I. Celikovic et al., Acta Phys. Pol., B 44, 375 (2013)

    Article  ADS  Google Scholar 

  65. J. Leske et al., Phys. Rev. C 72, 044301 (2005)

  66. M. Koizumi et al., Nucl. Phys. A 730, 46 (2004)

    Article  ADS  Google Scholar 

  67. S. Calinescu et al., Phys. Rev. C 104, 034318 (2021)

  68. C. Louchart et al., Phys. Rev. C 87, 054302 (2013)

  69. N.J. Stone, Atomic Data and Nucl. Data Tables 111, 1 (2016)

    Article  ADS  Google Scholar 

  70. W.K. Koo, L.J. Tassie, J. Phys. G: Nucl. Part. Phys. 7, L63 (1981)

    Article  ADS  Google Scholar 

  71. R. Neuhausen, J.W. Lightbody Jr., S.P. Fivozinsky, S. Penner, Nucl. Phys. A 263, 249 (1976)

    Article  ADS  Google Scholar 

  72. S. Salém-Vasconcelos, M.J. Bechara, J.H. Hirata, O. Dietzsch, Phys. Rev. C 38, 2439 (1988)

    Article  ADS  Google Scholar 

  73. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  74. A.S. Davydov, V.S. Rostovsky, Nucl. Phys. 12, 58 (1959)

    Article  Google Scholar 

  75. T. Bengtsson, I. Ragnarsson, S. Åberg, In Comput. Nucl. Phys. 1 page 51. Springer, (1991)

  76. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23 (1984)

    Article  ADS  Google Scholar 

  77. T.R. Rodríguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010)

  78. J. Srebrny et al., Nucl. Phys. A 766, 25 (2006)

    Article  ADS  Google Scholar 

  79. S. Hellgartner et al., Phys. Lett. B 841, 137933 (2023)

  80. S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 054301 (2010)

  81. A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020)

  82. K. Hadyńska-Klȩk et al., Phys. Rev. C 97, 024326 (2018)

Download references

Acknowledgements

One of the author, I. A. acknowledges the financial support received from University Grants Commission in the form of senior research fellowship via Sr. no. 2061651483 & Ref. no. 19/06/2016(i)EU-V. I. A. is also thankful to Yashraj, C. Kumar and U. S. Ghosh (IUAC) for fruitful discussions related to the current work. We also acknowledge A. Kumar and the high performance computing facility at IUAC New Delhi, for providing the platform to carry out the shell model calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Additional information

Communicated by Kamila Sieja.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I., Kumar, R., Hadyńska-Klȩk, K. et al. Shell-model studies relevant for the low-energy Coulomb excitation in Zn isotopes. Eur. Phys. J. A 59, 306 (2023). https://doi.org/10.1140/epja/s10050-023-01213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01213-2

Navigation