Skip to main content

Shell Model Approaches: From N = Z Towards the Neutron Drip Line

  • Chapter
  • First Online:
The Euroschool on Exotic Beams, Vol. VI

Part of the book series: Lecture Notes in Physics ((LNP,volume 1005))

  • 491 Accesses

Abstract

The shell model with large-scale configuration mixing (SM-CI) is the theoretical tool of choice in nuclear spectroscopy. In this chapter, we introduce its basic concepts and discuss our present understanding of the model in terms of the competition between the spherical mean field and the nuclear correlations. A key aspect we shall treat is the choice of the valence spaces and effective interactions. We shall discuss as well the main collective modes of the nucleus—superfluidity, associated with the pairing interaction and vibrations and rotations originating in the multipole-multipole terms—using simple models. The emergence of permanent quadrupole deformation and rotational bands brings us to study Elliott’s model and some of its variants. These models make it possible to give a physically intuitive interpretation of the full-fledged SM-CI calculations. First, we examine the cases of shape coexistence in two paradigms of doubly magic nuclei,40Ca and56Ni. We then move into the neutron-rich regime, to study the mechanisms that lead to the appearance of islands of inversion (IoI) at N = 40 and N = 50 and its relationship with the phenomenon of shape coexistence in 68Ni and 78Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 011401 (2001)

    Article  Google Scholar 

  2. P. Navratil, W.E. Ormand, J.P. Vary, B.R. Barret, Phys. Rev. Lett. 87,172501 (2001)

    Article  ADS  Google Scholar 

  3. E. Epelbaum, H. Krebs, D. Lee, Ulf-G. Meissner, Phys. Rev. Lett. 106, 192501 (2011)

    Google Scholar 

  4. S.R. Stroberg, H. Hergert, S.K. Bogner, J.D. Holt, Ann. Rev. Nucl. Part. Sci. 69, 307 (2019)

    Article  ADS  Google Scholar 

  5. V.R. Pandharipande, I. Sick, P.K.A, deWitt Huberts, Rev. Mod. Phys. 69, 981 (1997)

    Google Scholar 

  6. D.M. Brink, E. Boeker, Nucl. Phys. A 91, 1 (1967)

    Article  ADS  Google Scholar 

  7. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1569 (1980)

    Article  ADS  Google Scholar 

  8. J.M. Cavedon et al., Phys. Rev. Lett. 49, 978 (1982)

    Article  ADS  Google Scholar 

  9. E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  10. T.A. Brody, M. Moshinsky, Tables of Transformation Brackets for Nuclear Shell-Model Calculations (Gordon and Breach Science Publishers, New York, 1967)

    Google Scholar 

  11. K. Heyde, The Nuclear Shell Model (Springer, Berlin,1994)

    Book  Google Scholar 

  12. M. Dufour, A.P. Zuker, Phys. Rev. C 54, 1641 (1996)

    Article  ADS  Google Scholar 

  13. B. A. Brown et al., OXBASH code, MSU-NSCL technical report 524 (1985)

    Google Scholar 

  14. B.A. Brown, W.D.M. Rae, Nucl. Data Sheets 120, 115 (2014)

    Article  ADS  Google Scholar 

  15. N. Shimizu, T. Mizusaki, Y. Utsuno, Y. Tsunoda, Comput. Phys. Commun. 244, 372 (2019)

    Article  ADS  Google Scholar 

  16. E, Caurier, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 064304 (2010)

    Google Scholar 

  17. J.P. Elliott, Proc. R. Soc. Lond. Ser. A 245, 128 (1956)

    ADS  Google Scholar 

  18. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969); K. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969)

    Article  ADS  Google Scholar 

  19. A.P. Zuker, J. Retamosa, A. Poves, E. Caurier, Phys. Rev. C 52, R1741 (1995)

    Article  ADS  Google Scholar 

  20. E. Caurier, J.L. Egido, G. Martínez-Pinedo, A. Poves, J. Retamosa, L.M. Robledo, A.P. Zuker, Phys. Rev. Lett. 75, 2466 (1995)

    Article  ADS  Google Scholar 

  21. A.P. Zuker, Phys. Rev. Lett. 90, 042502 (2003)

    Article  ADS  Google Scholar 

  22. P. Navratil, W.E. Ormand, Phys. Rev. Lett. 88, 152502 (2002)

    Article  ADS  Google Scholar 

  23. K. Kumar, Phys. Rev. Lett. 28, 249 (1972)

    Article  ADS  Google Scholar 

  24. A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020)

    Article  ADS  Google Scholar 

  25. A.P. Zuker, A. Poves, F. Nowacki, S.M. Lenzi, Phys. Rev. C 92 024320 (2015)

    Article  ADS  Google Scholar 

  26. J. Retamosa, J.M. Udias, A. Poves, E. Moya de Guerra, Nucl. Phys. A 511, 211 (1990)

    Article  ADS  Google Scholar 

  27. E. Caurier, J. Menéndez, F. Nowacki, A. Poves, Phys. Rev. C 75 054317 (2007)

    Article  ADS  Google Scholar 

  28. D. Rudolf et al., Phys. Rev. Lett. 82, 3763 (1999)

    Article  ADS  Google Scholar 

  29. O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008)

    Article  ADS  Google Scholar 

  30. T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, Y. Utsuno, Rev. Mod. Phys. 92, 015002 (2020)

    Article  ADS  Google Scholar 

  31. F. Nowacki, A. Poves, A. Obertelli, Prog. Part. Nucl. Phys. 120 103866 (2021)

    Article  Google Scholar 

  32. E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990)

    Article  ADS  Google Scholar 

  33. S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 054301 (2010)

    Article  ADS  Google Scholar 

  34. M. L. Cortes et al., Phys. Lett. B 800, 135071 (2020)

    Article  Google Scholar 

  35. F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016)

    Article  ADS  Google Scholar 

  36. R. Taniuchi et al., Nature 569, 53 (2019)

    Article  ADS  Google Scholar 

  37. B.H. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984)

    Article  ADS  Google Scholar 

  38. A. Sánchez-Fernández, B. Bally, T.R. Rodríguez, Phys. Rev. C 104, 054306 (2021)

    Article  ADS  Google Scholar 

  39. D. Duy Duc, F. Nowacki, Phys. Rev. C 105, 054314 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

AP’s work is supported in part by the Ministerio de Ciencia, Innovación y Universidades (Spain), Grant CEX2020-001007-S funded by MCIN/AEI/10.13039/501100011033 and Grant PGC-2018-94583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Poves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poves, A., Nowacki, F. (2022). Shell Model Approaches: From N = Z Towards the Neutron Drip Line. In: Lenzi, S.M., Cortina-Gil, D. (eds) The Euroschool on Exotic Beams, Vol. VI. Lecture Notes in Physics, vol 1005. Springer, Cham. https://doi.org/10.1007/978-3-031-10751-1_1

Download citation

Publish with us

Policies and ethics