Skip to main content
Log in

Behavior of 6Li + 144Sm elastic and inelastic angular distributions in the region of the Coulomb barrier

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Elastic and inelastic scattering angular distributions (ADs) for the 6Li + 144Sm system in the 21–45 MeV energy range are analyzed with a Woods-Saxon phenomenological and two microscopic optical potentials, with one derived from the São Paulo formulation and the other from cluster folding of realistic alpha and deuteron potentials. Energy-dependent real, JV, and imaginary, JW, potential volume integrals are extracted from each potential system. It is shown that their variation in the region of the Coulomb barrier displays the normal threshold anomaly of strong coupling between the real and imaginary potentials. The reduced energy dependence on the extracted reduced reaction cross sections for the 6Li + 144Sm system is presented and compared to the calculated one using Wong’s formula. The strength and energy dependence of the inelastic ADs are reasonably described using the adopted potentials within the framework of the coupled channels method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: The experimental data used in the present study was published by Figueira et al. [14], Clark et al. [15], and Woodard et al. [16]].

References

  1. R. L. Gluckstern and G. Breit, Proc. 2nd. Conf. on reactions between complex nuclei, Gatlinburg, 1960, ed. A. Zucker, E. C. Halbert and F. J. Howard (Wiley, NY, 1960).

  2. K. Bethge, Ann Rev. Nucl. Sci. 20, 255 (1970)

    ADS  Google Scholar 

  3. J. Cook, Nucl. Phys. A 375, 238 (1982)

    ADS  Google Scholar 

  4. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    ADS  Google Scholar 

  5. N. Keeley et al., Nucl. Phys. A 571, 326 (1994). (and references therein)

    ADS  Google Scholar 

  6. M.A. Nagarajan, C.C. Mahaux, G.R. Satchler, Phys. Rev. Lett. 54, 1136 (1985)

    ADS  Google Scholar 

  7. G.R. Satchler, Phys. Rep. 199, 147 (1991)

    ADS  Google Scholar 

  8. A.M. Sanchez-Benitez et al., Nucl. Phys. A 803, 30 (2008)

    ADS  Google Scholar 

  9. D. Escrig et al., Nucl. Phys. A 792, 2 (2007)

    ADS  Google Scholar 

  10. J.P. Fernandez-Garcia et al., PRL 110, 142701 (2013)

    ADS  Google Scholar 

  11. M.A. Tiede, D.E. Trcka, K.W. Kemper, Phys. Rev. C 44, 1698 (1991)

    ADS  Google Scholar 

  12. A. Pakou et al., Phys. Lett. B 556, 21 (2003)

    ADS  Google Scholar 

  13. R. Navarro-Perez, J. Lei, Phys. Lett. B 795, 200 (2019)

    Google Scholar 

  14. J.M. Figueira et al., Phys. Rev. C 81, 024613 (2010). https://doi.org/10.1103/PhysRevC.81.024613

    Article  ADS  Google Scholar 

  15. P.D. Clark et al., Nucl. Phys. A 352, 267 (1981). https://doi.org/10.1016/0375-9474(81)90380-8

    Article  ADS  Google Scholar 

  16. A.E. Woodard et al., Nucl. Phys. A 873, 17 (2012). https://doi.org/10.1016/j.nuclphysa.2011.10.003

    Article  ADS  Google Scholar 

  17. L.C. Chamon et al., Phys. Rev. Lett. 79, 5218 (1997)

    ADS  Google Scholar 

  18. L.C. Chamon, D. Pereira, M.S. Hussein, Phys. Rev. C 58, 576 (1998)

    ADS  Google Scholar 

  19. L.C. Chamon, Nucl. Phys. A 787, 198c (2007)

    ADS  Google Scholar 

  20. L.C. Chamon, B.V. Carlson, L.R. Gasques, Comp. Phys. Comm. 267, 108061 (2021)

    Google Scholar 

  21. B.V. Carlson, D. Hirata, Phys. Rev. C 62, 054310 (2000)

    ADS  Google Scholar 

  22. P.R. Christensen, A. Berinde, I. Neamu, N. Scintei, Nucl. Phys. A 129, 337 (1969)

    ADS  Google Scholar 

  23. J.H. Barker, J.C. Hiebert, Phys. Rev. C 4, 2256 (1971)

    ADS  Google Scholar 

  24. P. Schwandt et al., Phys. Rev. C 24, 1522 (1981)

    ADS  Google Scholar 

  25. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    ADS  Google Scholar 

  26. M.A.G. Alvarez et al., Nucl. Phys. A 723, 93 (2003)

    ADS  Google Scholar 

  27. M.A.G. Alvarez, N. Alamanos, L.C. Chamon, M.S. Hussein, Nucl. Phys. A 753, 83 (2005)

    ADS  Google Scholar 

  28. J.P. Fernández-García, M. Rodríguez-Gallardo, M.A.G. Alvarez, A.M. Moro, Nucl. Phys. A 840, 19 (2010)

    ADS  Google Scholar 

  29. J.P. Fernández-García, M.A.G. Alvarez, L.C. Chamon, Phys. Rev. C 92, 014604 (2015)

    ADS  Google Scholar 

  30. J.P. Fernández-García, M.A.G. Alvarez, A.M. Moroa, M. Rodríguez-Gallardo, Phys. Lett. B 693, 310 (2010)

    ADS  Google Scholar 

  31. M.A.G. Alvarez et al., Phys. Rev. C 100, 064602 (2019)

    ADS  Google Scholar 

  32. M.A.G. Alvarez et al., Phys. Rev. C 103, 054614 (2021)

    ADS  Google Scholar 

  33. J. Cook, K.W. Kemper, M.F. Vineyard, Phys. Rev. C 26, 486 (1982)

    ADS  Google Scholar 

  34. Y. Sakuragi, Phys. Rev. C 35, 2161 (1987)

    ADS  Google Scholar 

  35. D. Abriola et al., Phys. Rev. C 39, 546 (1989)

    ADS  Google Scholar 

  36. D. Abriola et al., Phys. Rev. C 46, 244 (1992)

    ADS  Google Scholar 

  37. L. Fimiani et al., Phys. Rev. C 86, 044607 (2012)

    ADS  Google Scholar 

  38. H. Kumawat et al., Phys. Rev. C 78, 044617 (2008)

    ADS  Google Scholar 

  39. N.N. Deshmukh et al., Phys. Rev. C 83, 024607 (2011)

    ADS  Google Scholar 

  40. A.M.M. Maciel et al., Phys. Rev. C 59, 2103 (1999)

    ADS  Google Scholar 

  41. S. Santra et al., Phys. Rev. C 83, 034616 (2011)

    ADS  Google Scholar 

  42. S. Dubey et al., Phys. Rev. C 89, 014610 (2014)

    ADS  Google Scholar 

  43. C. Mahaux, H. Ngô, G.R. Satchler, Nucl. Phys. A 449, 354 (1986)

    ADS  Google Scholar 

  44. G.R. Kelly et al., Phys. Rev. C 63, 024601 (2000)

    ADS  Google Scholar 

  45. J.J. Kolata, E.F. Aguilera, Phys. Rev. C 79, 027603 (2009)

    ADS  Google Scholar 

  46. E.F. Aguilera et al., Phys. Rev. C 83, 021601 (2011)

    ADS  Google Scholar 

  47. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    ADS  Google Scholar 

  48. A. Barioni et al., Phys. Rev. C 84, 014603 (2011). (see references therein)

    ADS  Google Scholar 

  49. K. Kundalia, D. Gupta, Sk.M. Ali et al., Phys. Lett. B 833, 137294 (2022)

    Google Scholar 

  50. S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    ADS  Google Scholar 

  51. T. Kibedi, R.H. Spear, At. Data Nucl. Data Tables 80, 35 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP19175991). A.A.Ibraheem express his appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through research groups program under grant of number R.G.P.2/4/44. Sh. H. would like to thank Prof. K. Rusek for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Hamada.

Additional information

Communicated by Alexis Diaz-Torres

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmanaliyev, Z., Mauyey, B., Ibraheem, A.A. et al. Behavior of 6Li + 144Sm elastic and inelastic angular distributions in the region of the Coulomb barrier. Eur. Phys. J. A 59, 282 (2023). https://doi.org/10.1140/epja/s10050-023-01191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01191-5

Navigation