Skip to main content
Log in

Relativistic Hartree–Fock chiral Lagrangians with confinement, nucleon finite size and short-range effects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A relativistic Hartree–Fock Lagrangian including a chiral potential and nucleon polarisation is investigated in hopes of providing a better description of dense nuclear matter. We fully consider the contribution of the exchange Fock term to the energy and the self-energies, and in addition we investigate the nucleon’s compositeness and finite size effects (confinement and form factors) and short range correlations modeled by a Jastrow ansatz. These effects are added step by step, such that their impact on the dense matter properties can be analysed in details. The parameters of the model are adjusted to reproduce fundamental properties related to the QCD theory at low energy, such as the chiral symmetry breaking, nucleon’s quark substructure and Lattice-QCD predictions, as well as two empirical properties at saturation: the binding energy and the density. All other empirical parameters, e.g., symmetry energy and its slope, incompressibility modulus, effective mass, as well as spin–isospin Landau–Midgal parameter are predictions of the models and can be used to evaluate the gain of the different approximation schemes in describing nuclear properties. Bayesian statistics is employed in order to propagate parameter uncertainties into predictions for the nuclear matter properties. We show that the splitting of the effective Landau mass is largely influenced by the value of the \(\rho ^T\) coupling, and we show that the fit to the symmetry energy, which induces an increase of the coupling constant \(g_\rho \) by about 20–25% compared to the case where it is fixed by the quark model, provides a very good EoS compatible with the present nuclear physics knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data generated in this study is available upon request.]

References

  1. H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. B 47(4), 365 (1973)

    Article  ADS  Google Scholar 

  2. T. Ablyazimov et al., Eur. Phys. J. A 53(3), 60 (2017). https://doi.org/10.1140/epja/i2017-12248-y

    Article  ADS  Google Scholar 

  3. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961). https://doi.org/10.1103/PhysRev.124.246

    Article  ADS  Google Scholar 

  4. S. Weinberg, Phys. Lett. B 251, 288 (1990). https://doi.org/10.1016/0370-2693(90)90938-3

    Article  ADS  Google Scholar 

  5. I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astrophys. J. 860(2), 149 (2018). https://doi.org/10.3847/1538-4357/aac267

    Article  ADS  Google Scholar 

  6. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97(2), 025805 (2018). https://doi.org/10.1103/PhysRevC.97.025805

    Article  ADS  Google Scholar 

  7. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013). https://doi.org/10.1088/0004-637X/773/1/11

    Article  ADS  Google Scholar 

  8. R. Somasundaram, I. Tews, J. Margueron, Phys. Rev. C 107, 025801 (2023). https://doi.org/10.1103/PhysRevC.107.025801

    Article  ADS  Google Scholar 

  9. R. Somasundaram, J. Margueron, G. Chanfray, H. Hansen, Eur. Phys. J. A 58(5), 84 (2022). https://doi.org/10.1140/epja/s10050-022-00733-7

    Article  ADS  Google Scholar 

  10. G. Chanfray, M. Ericson, P.A.M. Guichon, Phys. Rev. C 63, 055202 (2001). https://doi.org/10.1103/PhysRevC.63.055202

    Article  ADS  Google Scholar 

  11. G. Chanfray, M. Ericson, Eur. Phys. J. A 25, 151 (2005). https://doi.org/10.1140/epja/i2005-10074-6

    Article  ADS  Google Scholar 

  12. A. Bouyssy, J.F. Mathiot, N. Van Giai, S. Marcos, Phys. Rev. C 36, 380 (1987). https://doi.org/10.1103/PhysRevC.36.380

    Article  ADS  Google Scholar 

  13. E. Oset, H. Toki, W. Weise, Phys. Rep. 83(4), 281 (1982). https://doi.org/10.1016/0370-1573(82)90123-5

    Article  ADS  Google Scholar 

  14. M.C. Birse, Phys. Rev. C 53, R2048 (1996). https://doi.org/10.1103/PhysRevC.53.R2048

    Article  ADS  Google Scholar 

  15. G. Chanfray, M. Ericson, Phys. Rev. C 83, 015204 (2011). https://doi.org/10.1103/PhysRevC.83.015204

    Article  ADS  Google Scholar 

  16. G. Chanfray, D. Davesne, M. Ericson, M. Martini, Eur. Phys. J. A 27, 191 (2006). https://doi.org/10.1140/epja/i2005-10245-5

    Article  ADS  Google Scholar 

  17. E. Massot, G. Chanfray, Phys. Rev. C 78, 015204 (2008). https://doi.org/10.1103/PhysRevC.78.015204

    Article  ADS  Google Scholar 

  18. R.K. Bhaduri, Models of the Nucleon: From Quarks to Soliton (Addison-Wesley, Boston, 1988)

    Google Scholar 

  19. G. Höhler, E. Pietarinen, Nucl. Phys. B 95(2), 210 (1975). https://doi.org/10.1016/0550-3213(75)90042-5

    Article  ADS  Google Scholar 

  20. P.A.M. Guichon, Phys. Lett. B 200, 235 (1988). https://doi.org/10.1016/0370-2693(88)90762-9

    Article  ADS  Google Scholar 

  21. J. Hu, H. Toki, W. Wen, H. Shen, Eur. Phys. J. A 43(3), 323 (2010)

    Article  ADS  Google Scholar 

  22. W.H. Long, N. Van Giai, J. Meng, Phys. Lett. B 640(4), 150 (2006). https://doi.org/10.1016/j.physletb.2006.07.064

    Article  ADS  Google Scholar 

  23. W.H. Long, H. Sagawa, N. Van Giai, J. Meng, Phys. Rev. C 76, 034314 (2007). https://doi.org/10.1103/PhysRevC.76.034314

    Article  ADS  Google Scholar 

  24. G. Chanfray, M. Ericson, Phys. Rev. C 75, 015206 (2007). https://doi.org/10.1103/PhysRevC.75.015206

    Article  ADS  Google Scholar 

  25. G. Chanfray, H. Hansen, J. Margueron, (2023). https://doi.org/10.48550/arXiv.2304.01036

  26. D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004). https://doi.org/10.1103/PhysRevLett.92.242002

    Article  ADS  Google Scholar 

  27. W. Armour, C. Allton, D. Leinweber, A. Thomas, R. Young, Nucl. Phys. A 840(1–4), 97 (2010). https://doi.org/10.1016/j.nuclphysa.2010.03.012

    Article  ADS  Google Scholar 

  28. J. Margueron, F. Gulminelli, Phys. Rev. C 99 (2019). https://doi.org/10.1103/PhysRevC.99.025806

  29. P. Guichon, H. Matevosyan, N. Sandulescu, A. Thomas, Nucl. Phys. A 772(1–2), 1 (2006). https://doi.org/10.1016/j.nuclphysa.2006.04.002

    Article  ADS  Google Scholar 

  30. P. Bernardos, V.N. Fomenko, N.V. Giai, M.L. Quelle, S. Marcos, R. Niembro, L.N. Savushkin, Phys. Rev. C 48, 2665 (1993). https://doi.org/10.1103/PhysRevC.48.2665

    Article  ADS  Google Scholar 

  31. J.R. Stone, P. Guichon, H. Matevosyan, A. Thomas, Nucl. Phys. A 792(3–4), 341 (2007). https://doi.org/10.1016/j.nuclphysa.2007.05.011

    Article  ADS  Google Scholar 

  32. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149(1), 1 (1987). https://doi.org/10.1016/S0370-1573(87)80002-9

    Article  ADS  Google Scholar 

  33. S. Marcos, J.F. Mathiot, M. López-Quelle, R. Niembro, P. Bernardos, Nucl. Phys. A 600(4), 529 (1996). https://doi.org/10.1016/0375-9474(95)00507-2

    Article  ADS  Google Scholar 

  34. J. Hu, H. Toki, H. Shen, J. Phys. G Nucl. Part. Phys. 38(8), 085105 (2011). https://doi.org/10.1088/0954-3899/38/8/085105

    Article  ADS  Google Scholar 

  35. M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56(2), 446 (2006). https://doi.org/10.1016/j.ppnp.2005.09.001

    Article  ADS  Google Scholar 

  36. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992). https://doi.org/10.1103/RevModPhys.64.491

    Article  ADS  Google Scholar 

  37. T. Suzuki, H. Sakai, Phys. Lett. B 455(1), 25 (1999). https://doi.org/10.1016/S0370-2693(99)00445-1

    Article  ADS  Google Scholar 

  38. J. Margueron, S. Goriely, M. Grasso, G. Colò, H. Sagawa, J. Phys. G: Nucl. Part. Phys. 36(12), 125103 (2009). https://doi.org/10.1088/0954-3899/36/12/125103

    Article  ADS  Google Scholar 

  39. I.N. Borzov, S.V. Tolokonnikov, S.A. Fayans, Sov. J. Nucl. Phys. (Engl. Transl.) 40(5) (1984). https://www.osti.gov/biblio/5596979

  40. I. Borzov, Nucl. Phys. A 777, 645 (2006). https://doi.org/10.1016/j.nuclphysa.2005.05.147

    Article  ADS  Google Scholar 

  41. J. Dobaczewski, W. Nazarewicz, P.G. Reinhard, J. Phys. G Nucl. Part. Phys. 41(7), 074001 (2014). https://doi.org/10.1088/0954-3899/41/7/074001

    Article  ADS  Google Scholar 

  42. M. Jaminon, C. Mahaux, Phys. Rev. C 40, 354 (1989). https://doi.org/10.1103/PhysRevC.40.354

    Article  ADS  Google Scholar 

  43. Z. Ma, J. Rong, B.Q. Chen, Z.Y. Zhu, H.Q. Song, Phys. Lett. B 604, 170 (2004). https://doi.org/10.1016/j.physletb.2004.11.004

    Article  ADS  Google Scholar 

  44. E.N.E. van Dalen, C. Fuchs, A. Faessler, Phys. Rev. C 72, 065803 (2005). https://doi.org/10.1103/PhysRevC.72.065803

    Article  ADS  Google Scholar 

  45. C. Drischler, A. Carbone, K. Hebeler, A. Schwenk, Phys. Rev. C 94, 054307 (2016). https://doi.org/10.1103/PhysRevC.94.054307

    Article  ADS  Google Scholar 

  46. A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013). https://doi.org/10.1103/PhysRevLett.111.032501

    Article  ADS  Google Scholar 

  47. C. García-Recio, J. Navarro, V.G. Nguyen, L. Salcedo, Ann. Phys. 214(2), 293 (1992). https://doi.org/10.1016/S0003-4916(05)80003-X

Download references

Acknowledgements

We would like to acknowledge Wenhui Long for sharing his RHF code in nuclear matter, from which the present models has been implemented. M.C., J.M., H.H. and G.C. are supported by the CNRS-IN2P3 MAC masterproject, and benefit from PHAROS COST Action MP16214. R.S. is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). R.S. also receives support from the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20220541ECR. R.S. also acknowledges support from the Nuclear Physics from Multi-Messenger Mergers (NP3M) Focused Research Hub which is funded by the National Science Foundation under Grant Number 21-16686. This work is supported by the STRONG-2020 network from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 824093 (H.H.); the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Université de Lyon for its financial support within the program Investissements d’Avenir (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Chamseddine.

Additional information

Communicated by Thomas Duguet.

Appendices

Appendix A: Explicit expressions for the direct contributions to the energy and to the self-energies

At the Hartree level, we have the direct terms contributions:

$$\begin{aligned} \varSigma ^D_{S,N}&= -\frac{g^2_{s}}{m^2_{s}}n_s - \frac{g^2_{\delta }}{m^2_{\delta }}(n_{sN}-n_{s\bar{N} } ), \end{aligned}$$
(A.1)
$$\begin{aligned} \varSigma ^D_{0,N}&= \frac{g^2_{\omega }}{m^2_{\omega }}n + \frac{g^2_{\rho }}{m^2_{\rho }}(n_{sN} - n_{s\bar{N} } ), \end{aligned}$$
(A.2)
$$\begin{aligned} \varSigma ^D_{V,N}&= 0 \end{aligned}$$
(A.3)

In what follows, we will write the exchange part of the self-energies.

Appendix B: Explicit expressions for the exchange self-energies in the case A (pure HF calculation)

1.1 Appendix B.1: \({ s\, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{E,s}_{S,N}&= \frac{1}{4}g_{s}^{*^2} \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{s}(\textrm{q})2\hat{M_N}(\mathrm {p'})} + \varSigma _S^{rg}, \end{aligned}$$
(B.4a)
$$\begin{aligned} \varSigma ^{E,s}_{0,N}&= \frac{1}{4}g_{s}^{*^2} \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{s}(\textrm{q})2f_N(\mathrm {p'})}, \end{aligned}$$
(B.4b)
$$\begin{aligned} \varSigma ^{E,s}_{V,N}&= -\frac{1}{4}g_{s}^{*^2} \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{s}(\textrm{q})2\tilde{\textbf{p}} \cdot \hat{P_N}({\textbf{p}}^\prime )}, \end{aligned}$$
(B.4c)

The rearrangement term \(\varSigma _S^{rg}\) gives momentum independent contributions to the scalar self energy, one due to the dependence of the effective coupling constant on the scalar field, i.e \(g^*_s(\bar{s})\) :

$$\begin{aligned} \varSigma _{S\,(rg\,1)}=-\,2\,\frac{\tilde{\kappa }_{NS}}{m^{*2}_{s}}\,\epsilon _{Fock}^{(s)} \end{aligned}$$
(B.4d)

with \(\tilde{\kappa }_{NS}\) defined in Eq. (7), and the other contribution due to the dependence of the effective scalar mass \(m^*_s(\bar{s})\) on the scalar field :

$$\begin{aligned} \varSigma _{S\,(rg\,2)}= & {} \frac{\partial m^{*2}_{s}}{\partial n_s}\,\frac{g_s^{*2}}{2}\, \int \frac{d\textbf{p}}{(2\pi )^3}\frac{d\textbf{p}'}{(2\pi )^3} \frac{\partial D_s(\textrm{q})}{\partial m^*_s(\bar{s})}\nonumber \\{} & {} \sum _{N}\left( 1+{\hat{M}}(\textrm{p}){\hat{M}}(\mathrm {p'})-{\hat{P}}({\textbf{p}})\cdot {\hat{P}}({\textbf{p}}^\prime )\right) _N.\nonumber \\ \end{aligned}$$
(B.4e)

where the derivative of the in-medium sigma mass with respect to the scalar density is :

$$\begin{aligned} \frac{\partial m^{*2}_{s}}{\partial n_s}= & {} \left( v'''(\bar{s})\,+\,\frac{\partial \tilde{\kappa }_{NS}}{\partial \bar{s}}_,n_s\right) \, \frac{\partial {\bar{s}}}{\partial n_s}\,+\,\tilde{\kappa }_{NS}\nonumber \\= & {} \tilde{\kappa }_{NS}\,-\,\frac{g^{*}_{s}}{m^{*2}_{s}}\left( v'''(\bar{s})\,+\,\frac{\partial \tilde{\kappa }_{NS}}{\partial {\bar{s}}} \,n_s\right) . \end{aligned}$$
(B.4f)

1.2 Appendix B.2: \({\delta \, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{E,\delta }_{S,N}&= \frac{1}{4}g_{\delta }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\delta }(\textrm{q})2\hat{M_N}(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.5a)
$$\begin{aligned} \varSigma ^{E,\delta }_{0,N}&= \frac{1}{4}g_{\delta }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\delta }(\textrm{q})2f_N(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.5b)
$$\begin{aligned} \varSigma ^{E,\delta }_{V,N}&= -\frac{1}{4}g_{\delta }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\delta }(\textrm{q})2\tilde{\textbf{p}} \cdot \hat{P_N}({\textbf{p}}^\prime )} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) . \end{aligned}$$
(B.5c)

1.3 Appendix B.3: \({\omega \, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{E,\omega }_{S,N}&= -\frac{1}{4}g_{\omega }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\omega }(\textrm{q})8\hat{M_N}(\mathrm {p'})}, \end{aligned}$$
(B.6a)
$$\begin{aligned} \varSigma ^{E,\omega }_{0,N}&= \frac{1}{4}g_{\omega }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\omega }(\textrm{q})4f_N(\mathrm {p'}) }, \end{aligned}$$
(B.6b)
$$\begin{aligned} \varSigma ^{E,\omega }_{V,N}&= -\frac{1}{4}g_{\omega }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\omega }(\textrm{q})4\tilde{\textbf{p}} \cdot \hat{P_N}({\textbf{p}}^\prime ) }, \end{aligned}$$
(B.6c)

1.4 Appendix B.4: \({\rho ^V\, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{E,\rho }_{S,N}&= -\frac{1}{4}g_{\rho }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\rho }(\textrm{q})~8\hat{M_N}(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.7a)
$$\begin{aligned} \varSigma ^{E,\rho }_{0,N}&= \frac{1}{4}g_{\rho }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\rho }(\textrm{q})~4f_N(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.7b)
$$\begin{aligned} \varSigma ^{E,\rho }_{V,N}&= -\frac{1}{4}g_{\rho }^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\rho }(\textrm{q})~4\tilde{\textbf{p}} \cdot \hat{P_N}({\textbf{p}}^\prime ) } \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) . \end{aligned}$$
(B.7c)

1.5 Appendix B.5: \({\rho ^{VT}\, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{E,\rho ^{VT}}_{S,N}&= -\frac{1}{4} \left( \frac{g_{\rho }f_{\rho }}{2M_N} \right) \int {}\frac{d \mathbf{p'}}{(2\pi )^3}D_{\rho }(\textrm{q})~12\textbf{q} \cdot \hat{P_N}({\textbf{p}}^\prime )) \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.8a)
$$\begin{aligned} \varSigma ^{E,\rho ^{VT}}_{0,N}&= 0 \end{aligned}$$
(B.8b)
$$\begin{aligned} \varSigma ^{E,\rho ^{VT}}_{V,N}&= -\frac{1}{4}\left( \frac{g_{\rho }f_{\rho }}{2M_N} \right) \int {\frac{d \mathbf{p'}}{(2\pi )^3}D_{\rho }(\textrm{q})~12\hat{M_N}(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) . \end{aligned}$$
(B.8c)

1.6 Appendix B.6: \({\rho ^{T}\, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{E,\rho ^T}_{S,N}&= \frac{1}{4}\left( \frac{f_{\rho }}{2M}\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}\textrm{q}^2D_{\rho }(\textrm{q})~6\hat{M_N}(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.9a)
$$\begin{aligned} \varSigma ^{E,\rho ^T}_{0,N}&= \frac{1}{4}\left( \frac{f_{\rho }}{2M}\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}\textrm{q}^2D_{\rho }(\textrm{q})~2f_N(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.9b)
$$\begin{aligned} \varSigma ^{E,\rho ^T}_{V,N}&= -\frac{1}{4}\left( \frac{f_{\rho }}{2M}\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}}D_{\rho }(\textrm{q}) \nonumber \\&\quad \times \left[ 2\textrm{q}^2(\tilde{\textbf{p}} \cdot \hat{P_N}({\textbf{p}}^\prime )) -8(\tilde{\textbf{p}}\cdot \textbf{q}) \left( \hat{P_N}({\textbf{p}}^\prime ) \cdot \textbf{q} \right) \right] \nonumber \\&\quad +2\times \left( N\longmapsto \bar{N}\right) . \end{aligned}$$
(B.9c)

1.7 Appendix B.7: \({\pi \, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{E,\pi }_{S,N}&= \frac{1}{4}\left( \frac{g_A}{2f_\pi }\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}\textrm{q}^2D_{\pi }(\textrm{q})~2\hat{M_N}(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.10a)
$$\begin{aligned} \varSigma ^{E,\pi }_{0,N}&= \frac{1}{4}\left( \frac{g_A}{2f_\pi }\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}\textrm{q}^2D_{\pi }(\textrm{q})~2f_N(\mathrm {p'})} \nonumber \\&\hspace{1.0cm} +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(B.10b)
$$\begin{aligned} \varSigma ^{E,\pi }_{V,N}&= -\frac{1}{4}\left( \frac{g_A}{2f_\pi }\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}}D_{\pi }(\textrm{q}) \nonumber \\&\quad \times \left[ 2\textrm{q}^2(\tilde{\textbf{p}} \cdot \hat{P_N}({\textbf{p}}^\prime )) -4(\tilde{\textbf{p}}\cdot \textbf{q} ) \left( \hat{P_N}({\textbf{p}}^\prime ) \cdot \textbf{q} \right) \right] \nonumber \\&\quad +2\times \left( N\longmapsto \bar{N}\right) . \end{aligned}$$
(B.10c)

After performing the angular integrations, we obtain the Eqs. (37) to (39).

Appendix C: Expressions for the exchange self-energies in the case D (HF with FF+SRC calculation)

1.1 Appendix C.1: \({\pi \, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{\pi }_{S,N}&= \frac{1}{4}\left( \frac{g_A}{2f_\pi }\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}}\nonumber \\ {}&\quad \left( \textrm{q}^2D_{\pi }(\textrm{q}) - 3g'_{\pi }(\textrm{q})\right) ~2\hat{M_N}(\mathrm {p'}) \nonumber \\&\quad +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(C.11a)
$$\begin{aligned} \varSigma ^{\pi }_{0,N}&= \frac{1}{4}\left( \frac{g_A}{2f_\pi }\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}}\nonumber \\ {}&\quad \left( \textrm{q}^2D_{\pi }(\textrm{q}) - 3g'_{\pi }(\textrm{q})\right) ~2f_N(\mathrm {p'}) \nonumber \\&\quad +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(C.11b)
$$\begin{aligned} \varSigma ^{\pi }_{V,N}&= -\frac{1}{4}\left( \frac{g_A}{2f_\pi }\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}} \left[ \left( \textrm{q}^2D_{\pi }(\textrm{q}) - 3h'_{\pi }(\textrm{q})\right) \right. \nonumber \\&\quad \times \left. \left( 2(\tilde{\textbf{p}}\cdot \hat{P_N}({\textbf{p}}^\prime ) ) - 4(\tilde{\textbf{p}}\cdot \tilde{\textbf{q}})(\hat{P_N}({\textbf{p}}^\prime )\cdot \tilde{\textbf{q}})\right) \right. \nonumber \\&\quad \left. -2(g'_{\pi }(\textrm{q}) - h'_{\pi }(\textrm{q}))(\tilde{\textbf{p}}\cdot \hat{P_N}({\textbf{p}}^\prime )) \right] \nonumber \\&\quad +2\times \left( N\longmapsto \bar{N}\right) \end{aligned}$$
(C.11c)

1.2 Appendix C.2: \({\rho ^T\, \textrm{coupling}}\)

$$\begin{aligned} \varSigma ^{\rho ^T}_{S,N}&= \frac{1}{4}\left( \frac{f_{\rho }}{2M}\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}}\left( \textrm{q}^2D_{\rho }(\textrm{q}) - 3g'_{\rho }(\textrm{q})\right) ~6{\hat{M}}'_N \nonumber \\ {}&\quad +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(C.12a)
$$\begin{aligned} \varSigma ^{\rho }_{0,N}&= \frac{1}{4}\left( \frac{f_{\rho }}{2M}\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}}\left( \textrm{q}^2D_{\rho }(\textrm{q}) - 3g'_{\rho }(\textrm{q})\right) 2f_N(\mathrm {p'}) \nonumber \\&\quad +2\times \left( N\longmapsto \bar{N}\right) , \end{aligned}$$
(C.12b)
$$\begin{aligned} \varSigma ^{\rho }_{V,N}&= -\frac{1}{4}\left( \frac{f_{\rho }}{2M}\right) ^2 \int {\frac{d \mathbf{p'}}{(2\pi )^3}} \left[ \left( \textrm{q}^2D_{\rho }(\textrm{q}) - 3h'_{\rho }(\textrm{q})\right) \right. \nonumber \\&\quad \left. \times \left( 2(\tilde{\textbf{p}}\cdot \hat{P_N}({\textbf{p}}^\prime )) - 8(\tilde{\textbf{p}}\cdot \tilde{\textbf{q}})(\hat{P_N}({\textbf{p}}^\prime )\cdot \tilde{\textbf{q}})\right) \right. \nonumber \\&\quad \left. -2(g'_{\rho }(\textrm{q}) - h'_{\rho }(\textrm{q}))(\tilde{\textbf{p}}\cdot \hat{P_N}({\textbf{p}}^\prime )) \right] \nonumber \\&\quad +2\times \left( N\longmapsto \bar{N}\right) \end{aligned}$$
(C.12c)

Appendix D: Derivation of the spin–isospin Landau–Migdal parameter \(g^\prime \)

We start from the non-relativistic reduction of the \(\rho \) potential, expressed in the center of mass reference frame (\({\textbf{p}}+{\textbf{p}}^\prime =0\)) as in Ref. [32], which provide the following contribution to the spin–isospin central interaction,

$$\begin{aligned} V_\rho ({\textbf{q}}){} & {} =-\frac{2}{3}\textrm{q}^2 D_\rho (\textrm{q})g_\rho ^2\Big \{ 1 +2 \frac{\kappa _\rho }{2M_N} + \left( \frac{\kappa _\rho }{2M_N}\right) ^2\Big \} \varvec{\sigma }_1. \varvec{\sigma }_2 \nonumber \\{} & {} =-\frac{2}{3}V_{A,\rho }(\textrm{q})g_\rho ^2\Big \{1 +2 \frac{\kappa _\rho }{2M_N} + \left( \frac{\kappa _\rho }{2M_N}\right) ^2\Big \} \varvec{\sigma }_1. \varvec{\sigma }_2\nonumber \\ \end{aligned}$$
(D.13)

where we have employed coupling constants consistently with our Lagrangian (4). The spin–isospin central interaction has three components arising from the vector, vector-tensor and tensor part of the interaction. For the \(\pi \) interaction, we simply have

$$\begin{aligned} V_\pi ({\textbf{q}})=-\frac{1}{3}\left( \frac{g_A}{2 f_\pi }\right) ^2 V_{A,\pi }(\textrm{q}) \varvec{\sigma }_1. \varvec{\sigma }_2 \end{aligned}$$
(D.14)

We can now define the Landau–Migdal parameter \(G'\) which governs the response in the Gamow–Teller (GT) channel and is defined as the spin–isospin channel of the central interaction,

$$\begin{aligned} V_{GT} = G^\prime (\varvec{\sigma }_1\cdot \varvec{\sigma }_2)\,. \end{aligned}$$
(D.15)

The Landau–Migdal parameter \(G^\prime \) takes the contribution from the \(\rho \) and the \(\pi \) given in Eqs. (D.13) and (D.14), and evaluated at \(\textrm{q}=0\).

1.1 Appendix D.1: Model A

We have for the pure HF model (model A), from

Equations (D.13), (D.14),

$$\begin{aligned} G^\prime _A(\textrm{q}) = -\frac{1}{3}\left( \frac{g_A}{2 f_\pi }\right) ^2V_{A,\pi }(\textrm{q}) -\frac{2}{3}\left( \frac{f_\rho }{2 M_N}\right) ^2V_{A,\rho ^T}(\textrm{q}) \,.\nonumber \\ \end{aligned}$$
(D.16)

The dimensionless Landau–Migdal interaction \(g_A^\prime (\textrm{q})\) is defined as,

$$\begin{aligned} G^\prime _A(\textrm{q}) = \left( \frac{g_A}{2 f_\pi }\right) ^2 g^\prime _A(\textrm{q}), \end{aligned}$$
(D.17)

with

$$\begin{aligned} g^\prime _A(\textrm{q}) = -\frac{1}{3} V_{A,\pi }(\textrm{q}) -\frac{2}{3} \mathcal {C}_\rho V_{A,\rho ^T}(\textrm{q}) \,, \end{aligned}$$
(D.18)

with \(\mathcal {C}_\rho = \left( f_\pi g_\rho \kappa _\rho /(g_AM_N)\right) ^2\).

This expression reduces to the Landau–Migdal parameter at the long-wave length limit \(\textrm{q}\rightarrow 0\). Since \(V_{A,\alpha }(\textrm{q}\rightarrow 0)\rightarrow 0\), we obtain for the GT Landau–Migdal parameter \(g^\prime _A=0\) in the pure HF model (model A).

Note that in nuclear physics a different dimensionless parameter \({\tilde{G}}^\prime \) is defined as \({\tilde{G}}^\prime =N_0G^\prime \), where \(N_0\) is the density of state in symmetric matter and at saturation density \(N_0=2M_N^* k_F/\pi ^2\) (\(N_0\approx 38\times 10^{3}\) MeV\(^2\) for \(M_N^*\approx 0.7 M_N\)), such that \({\tilde{G}}^\prime =N_0(g_A/2f_\pi )^2g^\prime \approx 1.6g^\prime \). See Ref. [47] for more details.

For model A, we can see directly from Eqs. (D.13) and (D.14) that

$$\begin{aligned} g'_A(\textrm{q}=0)=0. \end{aligned}$$
(D.19)

1.2 Appendix D.2: Model B

For model B, we replace \(V_A(\textrm{q})\) by \(V_B(\textrm{q})\) as in Eq. (43) for the \(\rho ^T\) and \(\pi \) interaction, so

$$\begin{aligned} G'_B{} & {} = -\frac{1}{3}\left( \frac{g_A}{2 f_\pi }\right) ^2V_{B,\pi }(\textrm{q}=0) \nonumber \\{} & {} \quad -\frac{2}{3}g_\rho ^2 \left\{ V_{A,\rho }(0) +2 \frac{\kappa _\rho }{2M_N} V_{A,\rho }(0) \right. \nonumber \\ {}{} & {} \left. \quad + \left( \frac{\kappa _\rho }{2M_N}\right) ^2V_{B,\rho }(0)\right\} \nonumber \\{} & {} = \frac{1}{3}\left( \frac{g_A}{2 f_\pi }\right) ^2 + \frac{2}{3}\left( \frac{g_\rho \kappa _\rho }{2M_N}\right) ^2 \,, \end{aligned}$$
(D.20)

and for the dimensionless Landau–Migdal parameter,

$$\begin{aligned} g^\prime _B = \frac{1}{3}+\frac{2}{3} \mathcal {C}_\rho \,, \end{aligned}$$
(D.21)

1.3 Appendix D.3: Model C

For model C with FF, \(F_\alpha (\textrm{q}=0)=1\), so we simply get the same as in the case A, namely

$$\begin{aligned} g'_C(\textrm{q}=0)=0. \end{aligned}$$
(D.22)

1.4 Appendix D.4: Model D

Finally, for model D, we replace \(V_A(\textrm{q})\) by \(V_D(\textrm{q})\) as in Eq. (65) for the \(\rho ^T\) and \(\pi \) interaction, and \(V_C(\textrm{q})\) for the rest, thus we get

$$\begin{aligned} G'_D= & {} -\frac{1}{3}\left( \frac{g_A}{2 f_\pi }\right) ^2 V_{D,\pi }(\textrm{0}) \nonumber \\{} & {} -\frac{2}{3}g_\rho ^2 \Big \{ V_{C,\rho ^V}(0) +2 \frac{\kappa _\rho }{2M_N} V_{C,\rho ^{VT}}(0) \nonumber \\ {}{} & {} + \left( \frac{\kappa _\rho }{2M_N}\right) ^2V_{D,\rho }(0)\Big \} \nonumber \\= & {} \frac{1}{3}\left( \frac{g_A}{2 f_\pi }\right) ^2\frac{\mathrm {q_c}^2}{\mathrm {q_c}^2+m_\pi ^2} \left( \frac{\varLambda _\pi ^2}{\varLambda _\pi ^2+\mathrm {q_c}^2} \right) ^2 \nonumber \\{} & {} +\frac{2}{3}\left( \frac{g_\rho \kappa _\rho }{2M_N}\right) ^2 \frac{\mathrm {q_c}^2}{\mathrm {q_c}^2+m_\rho ^2} \left( \frac{\varLambda _{\rho ^T}^2}{\varLambda _{\rho ^T}^2+\mathrm {q_c}^2} \right) ^2 \end{aligned}$$
(D.23)

The dimensionless Landau–Migdal parameter reads,

$$\begin{aligned} g^\prime _D(\textrm{q}\rightarrow 0)= & {} \frac{1}{3}\frac{\mathrm {q_c}^2}{\mathrm {q_c}^2+m_\pi ^2} \left( \frac{\varLambda _\pi ^2}{\varLambda _\pi ^2+\mathrm {q_c}^2} \right) ^2 \nonumber \\{} & {} +\frac{2}{3} \mathcal {C}_\rho \frac{\mathrm {q_c}^2}{\mathrm {q_c}^2+m_\rho ^2} \left( \frac{\varLambda _{\rho ^T}^2}{\varLambda _{\rho ^T}^2+\mathrm {q_c}^2} \right) ^2 \,. \end{aligned}$$
(D.24)

Note that if we include the SRC in all interaction channels, we would have \(V_D(\textrm{q})\) appearing for all terms in Eq. (D.23) instead of \(V_C(\textrm{q})\), and the contribution from the \(\rho \) and \(\rho ^T\) would simply add together and we would have \(\kappa _\rho \longmapsto 1+\kappa _\rho \) appearing in \(C_\rho \) instead.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamseddine, M., Margueron, J., Chanfray, G. et al. Relativistic Hartree–Fock chiral Lagrangians with confinement, nucleon finite size and short-range effects. Eur. Phys. J. A 59, 177 (2023). https://doi.org/10.1140/epja/s10050-023-01089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01089-2

Navigation