Skip to main content
Log in

Constraints on the in-medium nuclear interaction from chiral symmetry and lattice-QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper we discuss the combined effects on nuclear matter properties of the quark confinement mechanism in nucleon and of the chiral effective potential resulting from the spontaneous breaking of the chiral symmetry in nuclear matter. One specific aim is to show that the replacement of a basic chiral potential (linear sigma model type) by the enriched Nambu–Jona-Lasinio (NJL) model potential is able to reproduce the saturation properties while strongly decreasing the tension with QCD properties. Based on this NJL prediction, it is shown that the chiral potential acquires a specific scalar field cubic dependence, which contributes to the three-body interaction. We also discuss the constraints induced by Lattice-QCD on the model parameters governing the saturation properties. We introduce the term “QCD-connected parameters” for these quantities. We demonstrate that chiral symmetry and Lattice-QCD provide coherent constraints on the in-medium nuclear interaction, suggesting a fundamental origin of the saturation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has no associated data since the data shown in the two figures can be obtained from our formalism.]

References

  1. B.D. Serot, J.D. Walecka, The relativistic nuclear many-body problem. Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  2. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 16, 15 (1997)

    Google Scholar 

  3. G. Chanfray, J. Margueron, Phys. Rev. C 102, 024331 (2020)

    Article  ADS  Google Scholar 

  4. G. Chanfray, M. Ericson, P.A.M. Guichon, Phys. Rev. C 63, 055202 (2001)

    Article  ADS  Google Scholar 

  5. J. Boguta, Phys. Lett. B 120, 34 (1983)

    Article  ADS  Google Scholar 

  6. A.K. Kerman, L.D. Miller in “Second High Energy Heavy Ion Summer Study”,LBL-3675, 1974

  7. W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

    Article  ADS  Google Scholar 

  8. G. Chanfray, Nucl. Phys. A 721, 76c (2003)

    Article  ADS  Google Scholar 

  9. P.A.M. Guichon, Phys. Lett. B 200, 235 (1988)

    Article  ADS  Google Scholar 

  10. P.A.M. Guichon, A.W. Thomas, Phys. Rev. Lett. 93, 132502 (2004)

    Article  ADS  Google Scholar 

  11. P.A.M. Guichon, H.H. Matevosyan, N. Sandulescu, A.W. Thomas, Nucl. Phys. A 772, 1 (2006)

    Article  ADS  Google Scholar 

  12. R. Stone, P.A.M. Guichon, P.G. Reinhard, A.W. Thomas, Phys. Rev. Lett. 116, 092511 (2016)

    Article  ADS  Google Scholar 

  13. G. Chanfray, M. Ericson, Eur. Phys. J. A 25, 151 (2005)

    Article  ADS  Google Scholar 

  14. G. Chanfray, M. Ericson, Phys. Rev. C 75, 015206 (2007)

    Article  ADS  Google Scholar 

  15. E. Massot, G. Chanfray, Phys. Rev. C 78, 015204 (2008)

    Article  ADS  Google Scholar 

  16. E. Massot, G. Chanfray, Phys. Rev. C 80, 015202 (2009)

    Article  ADS  Google Scholar 

  17. E. Massot, J. Margueron, G. Chanfray, EPL 97, 39002 (2012)

    Article  ADS  Google Scholar 

  18. M. Ericson, G. Chanfray, Eur. Phys. J. A 34, 215 (2007)

    Article  ADS  Google Scholar 

  19. G. Chanfray, M. Ericson, Proceedings of the Eighteenth PANIC Conferérence (Eliat, Israel 2008) ) eds I. Tserruya, A. Gal, D. Ashery. arXiv: 0901.2479 [nucl-th];

  20. G. Chanfray, M. Ericson, Proceedings of the workshop “Achievements and New Directions in Subatomic Physics”, Adelaide, Australia, february 2010. Published in AIP Conf.Proc.1261:31-36, 2010. arXiv:1004.1265 [nucl-th]

  21. D. B. Leinweber, A. W. Thomas, R. D. Young, arXiv:hep-lat/0302020

  22. D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004)

    Article  ADS  Google Scholar 

  23. A. W. Thomas, P. A. M. Guichon, D. B. Leinweber, R. D. Young, Progr. Theor. Phys. Suppl. 156 (2004) 124; arxiv:nucl-th/0411014

  24. W. Armour, C.R. Alton, D.B. Leinweber, A.W. Thomas, R.D. Young, Nucl. Phys. A 840, 97 (2010)

    Article  ADS  Google Scholar 

  25. R. Somasundaram, J. Margueron, G. Chanfray, H. Hansen, Eur. Phys. J. A 58, 5 (2022)

    Article  Google Scholar 

  26. G. Chanfray, M. Ericson, Phys. Rev. C 83, 015204 (2011)

    Article  ADS  Google Scholar 

  27. L.-H. Chan, Phys. Rev. Lett. 57, 1199 (1986)

    Article  ADS  Google Scholar 

  28. G. Chanfray, H. Hansen, J. Margueron, work (NJLFCM) in preparation

  29. Y.A. Simonov, Phys. At. Nucl. 60, 2069 (1997)

    Google Scholar 

  30. Y.A. Simonov, Few-BodySyst. 25, 45 (1998)

    Article  ADS  Google Scholar 

  31. Y.A. Simonov, Phys. Rev. D 65, 094018 (2002)

    Article  ADS  Google Scholar 

  32. Y.A. Simonov, J.A. Tjon, Phys. Rev. D 62, 014501 (2000)

    Article  ADS  Google Scholar 

  33. Y.A. Simonov, J.A. Tjon, J. Weda, Phys. Rev. D 65, 094013 (2002)

    Article  ADS  Google Scholar 

  34. Yu.A.Simonov, Phys. At.Nucl. 67, 846 (2004), arxiv:hep-ph/0302090;

  35. Y.A. Simonov, Phys. At. Nucl. 67, 1027 (2004). arxiv:hep-ph/0305281

    Article  Google Scholar 

  36. Y.A. Simonov, Int. Mod. Phys. A 31, 165016 (2016). arXiv:1509.06930

    Google Scholar 

  37. G. Chanfray, M. Ericson, M. Martini, Universe 9(7), 316 (2023). arXiv:2307.03484 [nucl-th]

  38. A. Di Giacomo, H.G. Dosch, V.I. Shevchenko, Y.A. Simonov, Phys. Rep. 372, 319 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  39. M.C. Birse, Phys. Rev. C 51, R1083 (1995)

    Article  ADS  Google Scholar 

  40. K. Saito, A.W. Thomas, Phys. Rev. C 52, 2789 (1995)

    Article  ADS  Google Scholar 

  41. S.J. Wallace, F. Gross, J.A. Tjon, Phys. Rev. Lett. 74, 228 (1995)

    Article  ADS  Google Scholar 

  42. S.J. Wallace, Nucl. Phys. A 631, 137c (1998)

    Article  ADS  Google Scholar 

  43. S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999)

    Article  ADS  Google Scholar 

  44. E.N.E. van Dalen, H. Muther, Phys. Rev. C 84, 024320 (2011). arXiv:1106.3157 [nucl-th]

    Article  ADS  Google Scholar 

  45. G.A. Lalazissis, J. Konig, P. Ring, Phys. Rev. C 55, 540 (1997). arXiv:nucl-th/9607039

    Article  ADS  Google Scholar 

  46. S. Theberge, A.W. Thomas, G.A. Miller, Phys. Rev. D 22, 2838 (1980)

  47. S. Theberge, G.A. MilIer, A.W. Thomas, Can. J. Phys. 60, 59 (1982)

    Article  ADS  Google Scholar 

  48. A.W. Thomas, Adv. Nucl. Phys. 13, 1 (19XX)

  49. S.N. Jena, M.R. Behera, S. Panda, Phys. Rev. D 55, 291 (1997)

    Article  ADS  Google Scholar 

  50. Heinrich Leutwyler (2012) Chiral perturbation theory.Scholarpedia, 7(10):8708

  51. M. Chamseddine, J. Margueron, G. Chanfray, H. Hansen, work in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Margueron.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanfray, G., Hansen, H. & Margueron, J. Constraints on the in-medium nuclear interaction from chiral symmetry and lattice-QCD. Eur. Phys. J. A 59, 264 (2023). https://doi.org/10.1140/epja/s10050-023-01179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01179-1

Navigation