Skip to main content
Log in

Radiative and semileptonic decay widths of heavy ground state baryons in diquark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Study of heavy hadrons properties is of great interest to understand the dynamics of QCD at the hadronic scale. In this regard, there are many experimental and theoretical investigations on the static properties of heavy baryons. Nevertheless, there exist wide disparities among theoretical predictions. In this work, we analytically study the mass spectra, the semileptonic and radiative decay widths of singly and doubly heavy flavored baryons in a relativistic quark-diquark model. To this aim, we first solve the Bethe–Salpeter differential equation to find the binding energy equation of a two-body system. Interaction between flavors is considered as the sum of Hellmann potential, Goldstone-Boson exchange potential and a nonperturbative contribution. Having the energy equation and the wave function of bound states we will compute the mass, the radiative and the semileptonic decay widths and the branching ratio of single and double heavy flavored baryons. Our analytical results will be compared with other theoretical results as well as available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data could be found in the given references.]

References

  1. C. Patrignani, et al., [Particle Data Group Collaboration], Chin. Phys. C 40(10), 100001 (2016)

  2. H. X. Chen, et al., Rept. Prog. Phys. 86(2), 026201 (2023). see also arXiv:2204.09541 [hep-ex].

  3. B. Knapp et al., Phys. Rev. Lett. 37, 882 (1976)

    ADS  Google Scholar 

  4. E.G. Cazzoli et al., Phys. Rev. Lett. 34, 1125–1128 (1975)

    ADS  Google Scholar 

  5. G.D. Crawford et al., Phys. Rev. Lett. 71, 3259–3262 (1993)

    ADS  Google Scholar 

  6. S.F. Biagi et al., Phys. Lett. B 122, 455 (1983)

    ADS  Google Scholar 

  7. P. Avery et al., Phys. Rev. Lett. 62, 863 (1989)

    ADS  Google Scholar 

  8. P.L. Frabetti et al., Phys. Lett. B 338, 106–110 (1994)

    ADS  Google Scholar 

  9. M.I. Adamovich et al., Phys. Lett. B 358, 151–161 (1995)

    ADS  Google Scholar 

  10. D. Cronin-Hennessy et al., Phys. Rev. Lett. 86, 3730–3734 (2001)

    ADS  Google Scholar 

  11. M. Basile et al., Lett. Nuovo Cim. 31, 97 (1981)

    Google Scholar 

  12. T. Aaltonen et al., Phys. Rev. Lett. 99, 202001 (2007)

    ADS  Google Scholar 

  13. P. Abreu et al., Z. Phys. C 68, 541–554 (1995)

    ADS  Google Scholar 

  14. V.M. Abazov et al., Phys. Rev. Lett. 101, 232002 (2008)

    ADS  Google Scholar 

  15. M. Mattson et al., Phys. Rev. Lett. 89, 112001 (2002)

    ADS  Google Scholar 

  16. A. Ocherashvili et al., Phys. Lett. B 628, 18–24 (2005)

    ADS  Google Scholar 

  17. H. Garcilazo, Phys. Rev. D 94(7), 074003 (2016)

    ADS  Google Scholar 

  18. B. Aubert et al., Phys. Rev. D 74, 011103 (2006)

    ADS  Google Scholar 

  19. S.P. Ratti, Nucl. Phys. Proc. Suppl. 115, 33–36 (2003)

    ADS  Google Scholar 

  20. N. Isgur, M.B. Wise, Phys. Lett. B 237, 527 (1990)

    ADS  Google Scholar 

  21. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 75, 074008 (2007)

    ADS  Google Scholar 

  22. M. Sadzikowski, K. Zalewski, Z. Phys. C 59, 677 (1993)

    ADS  Google Scholar 

  23. Y.B. Dai, C.S. Huang, M.Q. Huang, C. Liu, Phys. Lett. B 387, 379 (1996)

    ADS  Google Scholar 

  24. M.A. Ivanov, V.E. Lyubovitskij, J.G. Körner, P. Kroll, Phys. Rev. D 56, 348 (1997)

    ADS  Google Scholar 

  25. E. Jenkins, A.V. Manohar, M.B. Wise, Nucl. Phys. B 396, 38 (1993)

    ADS  Google Scholar 

  26. B. Holdom, M. Sutherland, J. Mureika, Phys. Rev. D 49, 2359 (1994)

    ADS  Google Scholar 

  27. F.S. Yu, H.Y. Jiang, R.H. Li, C.D. Lü, W. Wang, Z.X. Zhao, Chin. Phys. C 42, 051001 (2018)

    ADS  Google Scholar 

  28. R.H. Li, C.D. Lü, W. Wang, F.S. Yu, Z.T. Zou, Phys. Lett. B 767, 232–235 (2017)

    ADS  Google Scholar 

  29. A. Faessler et al., Phys. Lett. B 518, 55–62 (2001)

    ADS  Google Scholar 

  30. A. Faessler et al., Phys. Rev. D 80, 034025 (2009)

    ADS  Google Scholar 

  31. D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 70, 014018 (2004)

    ADS  Google Scholar 

  32. E. Hernandez, J. Nieves, J.M. Verde-Velasco, Phys. Lett. B 663, 234 (2008)

    ADS  Google Scholar 

  33. C. Albertus, et al, Eur. Phys. J. A 32, 183 (2007). Erratum-ibid. A 36, 119 (2008).

  34. V.V. Molchanov et al., Phys. Lett. B 521, 171–180 (2001)

    ADS  Google Scholar 

  35. T. Ferbel, Acta Phys. Pol. B 12, 1129 (1981)

    Google Scholar 

  36. M. Zielinski, Acta Phys. Pol. B 18, 455 (1987)

    Google Scholar 

  37. E.N. May et al., Phys. Rev. D 16, 1983 (1977)

    ADS  Google Scholar 

  38. A. Kumar Raia, D. P. Rathaud, Eur. Phys. J. C 75, 462 (2015)

  39. Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett 97, 122003 (2006)

    ADS  Google Scholar 

  40. J. Adamowaski, Phys. Rev. A 31, 43 (1985)

    ADS  Google Scholar 

  41. D. Ebert et al., Phys. Rev. D 79, 114029 (2009)

    ADS  Google Scholar 

  42. G. Yang, J. Ping, J. Segovia, Symmetry 12(11), 1869 (2020)

    ADS  Google Scholar 

  43. J. Killingbeck, Phys. Lett. A 84, 95 (1981)

    ADS  MathSciNet  Google Scholar 

  44. B. Chakrabarti, A. Bhattacharya, S. Mani, A. Sagari, Acta Phys. Polon. B 41, 95–101 (2010)

  45. S. Mohammad Moosavi Nejad, A. Armat, Mod.Phys. Lett. A 33(04), 1850022 (2018)

  46. S. Mohammad Moosavi Nejad, A. Armat, Eur. Phys. J. A 56(11), 287 (2020)

  47. A. Bernotas, V. Simonis, Phys. Rev. D 87, 074016 (2013)

    ADS  Google Scholar 

  48. A. Majethiya, K. Thakkar, P.C. Vinodkumar, Chin. J. Phys. 54, 495–502 (2016)

    Google Scholar 

  49. W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)

    ADS  Google Scholar 

  50. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    ADS  Google Scholar 

  51. S.L. Zho et al., Phys. Rev. D 59, 114015 (1999)

    ADS  Google Scholar 

  52. Z.-G. Wang, et al., Eur. Phys. J. A 44, 105 (2010)

  53. S. Tawfiq et al., Phys. Rev. D 63, 034005 (2001)

    ADS  Google Scholar 

  54. T.M. Aliev et al., Phys. Rev. D 79, 056005 (2008)

    ADS  Google Scholar 

  55. K. G. Kane (Ed.), A. Pierce (Ed.), “Perspective on LHC Physics” (Michigan Univ.), pp 337. Hackensack, USA (2008)

  56. V.V. Kiselev, A.K. Likhoded, Phys. Usp. 45, 455 (2002)

    ADS  Google Scholar 

  57. S.S. Gershtein et al., Phys. Rev. D 62, 054021 (2000)

    ADS  Google Scholar 

  58. D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002)

    ADS  Google Scholar 

  59. R. Mizuk et al., (Belle Collaboration) Phys. Rev. Lett. 94, 122002 (2005)

  60. T.M. Aliev, A. Ozpineci, Nucl. Phys. B 732, 291 (2006)

    ADS  Google Scholar 

  61. Z.-G. Wang, Phys. Rev. D 81, 036002 (2010)

    ADS  Google Scholar 

  62. T.M. Aliev, K. Azizi, A. Ozpineci, Phys. Rev. D 79, 056005 (2009)

    ADS  Google Scholar 

  63. Q.F. Lü, K.L. Wang, L.Y. Xiao, X.H. Zhong, Phys. Rev. D 96, 114006 (2017)

    ADS  Google Scholar 

  64. T. Branz et al., Phys. Rev. D 81, 114036 (2010)

    ADS  Google Scholar 

  65. C. Albertus, E. Hernández, J. Nieves, Phys. Lett. B 690, 265 (2010)

    ADS  Google Scholar 

  66. R.L. Singleton, Phys. Rev. D 43, 2939 (1991)

    ADS  Google Scholar 

  67. B. Guberina, B. Melic, H. Stefancic, Eur. Phys. J. C 9, 213 (1999) [Eur. Phys. J. C 13, 551 (2000)].

  68. C.H. Chang, T. Li, X.Q. Li, Y.M. Wang, Commun. Theor. Phys. 49, 993 (2008)

    ADS  Google Scholar 

  69. A. V. Berezhnoy, A. K. Likhoded, Phys. Atom. Nucl. 79(2), 260 (2016) [Yad. Fiz. 79, no. 2, 151 (2016)].

  70. M. Karliner, J.L. Rosner, Phys. Rev. D 90, 094007 (2014)

    ADS  Google Scholar 

  71. W. Wang, F.S. Yu, Z.X. Zhao, Eur. Phys. J. C 77, 781 (2017)

    ADS  Google Scholar 

  72. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

  73. R. Mizuk et al., (Belle Collaboration) Phys. Rev. Lett. 94, 122002 (2005)

  74. M. Feindt, et al., (DELPHI Collaboration) 2007 Report no CERN-PRE/95–139.

  75. S. Mohammad Moosavi Nejad, Eur. Phys. J. A 52(5), 127 (2016)

  76. S. Mohammad Moosavi Nejad, Phys. Rev. D 96(11), 114021 (2017)

  77. S. Mohammad Moosavi Nejad, Eur. Phys. J. Plus 133(1), 25 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Farhadi.

Additional information

Communicated by Heng-Tong Ding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadi, M., Nejad, S.M.M. & Armat, A. Radiative and semileptonic decay widths of heavy ground state baryons in diquark model. Eur. Phys. J. A 59, 171 (2023). https://doi.org/10.1140/epja/s10050-023-01058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01058-9

Navigation