Skip to main content
Log in

Analytical Determination of Mass and Magnetic Moment of Baryons in Diquark Model

  • Published:
Few-Body Systems Aims and scope Submit manuscript

A Correction to this article was published on 29 September 2023

This article has been updated

Abstract

So far, many constituent quark models have been applied to describe the internal configuration of light and heavy baryons and also for determining their static properties Among all static quantities, the mass and the magnetic moment of baryons are the most interesting observables which provide direct information on the dynamics of strong interaction and color confinement phenomenon. In this work, through the quark–diquark model we analytically compute the mass and the magnetic moment of light and heavy baryons in their ground state. To this aim, we use the Bethe–Salpeter equation in the presence of Hellmann potential with the onepionexchange contribution to determine the mass and the wave function of baryons. Using the spin-flavor structure of constituent quarks we calculate the magnetic moment of light, single and double heavy baryons and compare them with existing data and other modeldependent predictions. We will also predict the mass and the magnetic moment of unobserved triply heavy baryons relevant for the present and future high energy colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. R.L. Workman et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

    Google Scholar 

  2. R. Aaij et al., (LHCb Collaboration), e. Phys. Rev. Lett. 121, 072002 (2018)

    ADS  Google Scholar 

  3. R. Aaij et al., (LHCb Collaboration), s. Phys. Rev. Lett. 122, 012001 (2019)

    ADS  Google Scholar 

  4. B. Chen, K.W. Wei, X. Liu, A. Zhang, Phys. Rev. D 98, 031502 (2018)

    ADS  Google Scholar 

  5. B. Chen, X. Liu, Phys. Rev. D 98, 074032 (2018)

    ADS  Google Scholar 

  6. K.L. Wang, Q.F. Lü, X.H. Zhong, Phys. Rev. D 99, 014011 (2019)

    ADS  Google Scholar 

  7. S.B. Athar et al., (CLEO Collaboration). Phys. Rev. D 71, 051101 (2005)

    ADS  Google Scholar 

  8. E. De La Cruz Burelo, (CDF Collaboration), Nucl. Phys. B 156, 244 (2006)

    Google Scholar 

  9. S.N. Jena, D.P. Rath, Phys. Rev. D 34, 196 (1986)

    ADS  Google Scholar 

  10. M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 12, 447–52 (2001)

    ADS  Google Scholar 

  11. N. Amiri, S.M.M. Nejad, A. Armat, M. Farhadi, Eur. Phys. J. Plus 137, 498 (2022)

    Google Scholar 

  12. A. Kumar Raia, D.P. Rathaud, Eur. Phys. J. C 75, 462 (2015)

    ADS  Google Scholar 

  13. J. Adamowaski, Phys. Rev. A 31, 43 (1985)

    ADS  Google Scholar 

  14. D. Ebert et al., Phys. Rev. D 79, 114029 (2009)

    ADS  Google Scholar 

  15. G. Yang, J. Ping, J. Segovia, Symmetry 12(11), 1869 (2020)

    ADS  Google Scholar 

  16. J. Killingbeck, Phys. Lett. A 84, 95 (1981)

    ADS  MathSciNet  Google Scholar 

  17. P. Maris, Few-Body Syst. 35, 117 (2004)

    ADS  Google Scholar 

  18. A.S. de Castro et al., Z. Phys. C 57, 315 (1993)

    ADS  Google Scholar 

  19. K. Nagata, A. Hosaka, Ann Rep/2006/sec2/nagata.pdf

  20. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basle, 1988). https://doi.org/10.1007/978-1-4757-1595-8

    Book  MATH  Google Scholar 

  21. S.M.M. Nejad, A. Armat, M. Farhadi, Eur. Phys. J. A 58(7), 127 (2022)

    ADS  Google Scholar 

  22. A.L. Choudhury, V. Joshi, Phys. Rev. D 13, 3115 (1976)

    ADS  Google Scholar 

  23. R.C. Verma, Can. J. Phys. 59, 506 (1981)

    ADS  Google Scholar 

  24. S.K. Bose, L.P. Singh, Phys. Rev. D 22, 773 (1980)

    ADS  Google Scholar 

  25. B. Julia-Diaz, D.O. Riska, Nucl. Phys. A 739, 69 (2004)

    ADS  Google Scholar 

  26. Y.S. Oh, D.P. Min, M. Rho, N.N. Scoccola, Nucl. Phys. A 534, 493 (1991)

    ADS  Google Scholar 

  27. S. Scholl, H. Weigel, Nucl. Phys. A 735, 163 (2004)

    ADS  Google Scholar 

  28. S.L. Zhu, W.Y. Hwang, Z.S. Yang, Phys. Rev. D 56, 7273 (1997)

    ADS  Google Scholar 

  29. T.M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D 65, 056008 (2002)

    ADS  Google Scholar 

  30. B. Patel et al., Pramana 72, 679–688 (2009)

    ADS  Google Scholar 

  31. M. Karliner, H.J. Lipkin, Phys. Lett. B 575, 249 (2003)

    ADS  Google Scholar 

  32. M. Tanabashi et al., (Particle Data Group). Phys. Rev. D 98, 030001 (2018)

    ADS  Google Scholar 

  33. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 72, 034026 (2005)

    ADS  Google Scholar 

  34. R. Roncaglia, D.B. Lichtenberg, E. Predazzi, Phys. Rev. D 52, 1722 (1995)

    ADS  Google Scholar 

  35. I.V. Gorelov, (CDF Collaboration) (2007). Preprint hep-ex/0701056

  36. B. Patel, A. Majethiya, P.C. Vinodkumar, Pramana 72, 679–688 (2009)

    ADS  Google Scholar 

  37. D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002)

    ADS  Google Scholar 

  38. V.V. Kiselev, A.K. Likhoded, Phys. Usp. 45, 455 (2002)

    ADS  Google Scholar 

  39. S.S. Gershtein et al., Phys. Rev. D 62, 054021 (2000)

    ADS  Google Scholar 

  40. S.P. Tong et al., Phys. Rev. D 62, 054024 (2000)

    ADS  Google Scholar 

  41. A. Faessler et al., Phys. Rev. D 73, 094013 (2006)

    ADS  MathSciNet  Google Scholar 

  42. C. Amsler et al., (Particle Data Group). Phys. Lett. B 667, 1 (2008)

    ADS  Google Scholar 

  43. M. De Sanctis, J. Ferretti, E. Santopinto, A. Vassallo, Phys. Rev. C 84, 055201 (2011)

    ADS  Google Scholar 

  44. C. Albertus, J. Nieves, J.M. Verde-Velasco, E. Hernandez, Eur. Phys. J. A 32, 183 (2007)

    ADS  Google Scholar 

  45. S.K. Bose, L.P. Singh, Phys. Rev. D 22, 773 (1980)

    ADS  Google Scholar 

  46. R. Mizuk et al., (Belle Collaboration) Phys. Rev. Lett. 94, 122002 (2005)

    ADS  Google Scholar 

  47. B. Aubert et al., (BABAR Collaboration) Phys. Rev. Lett. 98, 122011 (2007)

    ADS  Google Scholar 

  48. M. Feindt et al., (DELPHI Collaboration) Report no CERN-PRE/95-139 (2007)

  49. K.W. Edwards et al., (CLEO Collaboration) Phys. Rev. Lett. 74, 3331 (1995)

    ADS  Google Scholar 

  50. M. Artuso et al., (CLEO Collaboration) Phys. Rev. Lett. 86, 4479 (2001)

    ADS  Google Scholar 

  51. T. Inoue et al., Int. J. Mod. Phys. E 15, 121 (2006)

    ADS  Google Scholar 

  52. E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010)

    ADS  Google Scholar 

  53. A. Valcarce, H. Garcilazo, J. Vijande, Phys. Rev. C 72, 025206 (2005)

    ADS  Google Scholar 

  54. A. Majethiy, B. Patel, P.C. Vinodkumar, Eur. Phys. J. A 38, 3 (2008)

    Google Scholar 

  55. L.K. Sharma, C. Mai, J. Sci. 34, 1 (2007)

    Google Scholar 

  56. S.M.M. Nejad, M. Balali, Phys. Rev. D 90(11), 114017 (2014); Phys. Rev. D 93(11), 119904 (2016) (erratum)

  57. S.M. Moosavi Nejad, Phys. Rev. D 85, 054010 (2012)

    ADS  Google Scholar 

  58. S.M. Moosavi Nejad, Nucl. Phys. B 905, 217–230 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MF, SMM wrote the text of the original manuscript and prepared the tables, and AA performed the calculations. All authors reviewed the manuscript.

Corresponding author

Correspondence to A. Armat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Affiliation of author S. Mohammad Moosavi Nejad corrected.

Appendix

Appendix

In this section, the spin-flavor combinations and their wave functions related to the spin-1/2 and spin-3/2 baryons, used in Eq. (17), are given (Tables 9, 10, 11 and 12).

Table 9 Spin-flavor wave functions of heavy flavor baryons with \({\textrm{J}}^{\textrm{p}}=(1/2)^{+}\)
Table 10 Spin-flavor wave functions of heavy flavor baryons with \({\hbox {J}}^{\textrm{p}}=(3/2)^{+}\)
Table 11 Spin-flavor wave functions of light flavor baryons with \({\textrm{J}}^{\textrm{p}}=(1/2)^{+}\)
Table 12 Spin-flavor wave functions of light flavor baryons with \(\textrm{J}^{\textrm{p}}=(3/2)^{+}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadi, M., Moosavi Nejad, S.M. & Armat, A. Analytical Determination of Mass and Magnetic Moment of Baryons in Diquark Model. Few-Body Syst 64, 75 (2023). https://doi.org/10.1007/s00601-023-01854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01854-5

Navigation