Skip to main content
Log in

An improved empirical formula of \(\alpha \) decay half-lives for superheavy nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Based on the Santhosh formula (Nucl Phys A 825:159, 2009), considering the blocking effect of unpaired nucleons and the orbital angular momentum taken away by the emitted \(\alpha \) particle, we put forward an improved formula to evaluate \(\alpha \) decay half-lives for superheavy nuclei. Using this formula, we systematically investigate the \(\alpha \) decay half-lives of 141 nuclei ranging from Z = 96 to Z = 118 with the corresponding root-mean-square (rms) deviations being 0.319 , 0.619 and 0.388 for 41 even–even, 78 odd-A and 22 odd–odd nuclei, respectively. In addition, this improved formula is generalized to predict \(\alpha \) decay half-lives for 100 nuclei with Z = 117, 118, 119 and 120. For comparison, the predicted results obtained by using phenomenological formulae, semi-microscopic and/or microscopic models are also present. The corresponding predictions consistently indicate that N = 184 may be the next possible neutron magic number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment:All data included in this manuscript are available upon request by contacting with the corresponding author.].

References

  1. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    ADS  Google Scholar 

  2. Y.T. Oganessian, K.P. Rykaczewski, Phys. Today 68, 32 (2015)

    Google Scholar 

  3. Y.T. Oganessian, J. Phys. G 34, R165 (2007)

    ADS  Google Scholar 

  4. S. Hofmann, S. Heinz, J. Maurer et al., Eur. Phys. J. A 48, 62 (2012)

    ADS  Google Scholar 

  5. P.A. Ellison, K.E. Gregorich, J.S. Berryman et al., Phys. Rev. Lett. 105, 182701 (2010)

    ADS  Google Scholar 

  6. E. Peik, Z. Kai, Phys. Rev. Lett. 74, 044602 (2006)

    Google Scholar 

  7. Y.T. Oganessian, F.S. Abdullin, D.E. Benker et al., Phys. Rev. Lett. 104, 142502 (2010)

    ADS  Google Scholar 

  8. S. Hofmann, S. Heinz, G. Münzenberg et al., Eur. Phys. J. A 52, 180 (2016)

    ADS  Google Scholar 

  9. J.M. Dong, W. Zuo, J.Z. Gu et al., Phys. Rev. C 81, 064309 (2010)

    ADS  Google Scholar 

  10. T. Dong, Z. Ren, Phys. Rev. C 82, 034320 (2010)

    ADS  Google Scholar 

  11. S. Luo, Y.Y. Xu, D.X. Zhu et al., Eur. Phys. J. A 58, 244 (2022)

    ADS  Google Scholar 

  12. Y.Y. Xu, D.X. Zhu, Y.T. Zou et al., Eur. Phys. J. A 58, 16 (2022)

    ADS  Google Scholar 

  13. X.J. Bao, S.Q. Guo, H.F. Zhang et al., Phys. Rev. C 95, 034323 (2017)

    ADS  Google Scholar 

  14. Z. Ren, G. Xu, Phys. Rev. C 36, 456 (1987)

    ADS  Google Scholar 

  15. W.M. Seif, M. Shalaby, M.F. Alrakshy, Phys. Rev. C 84, 064608 (2011)

    ADS  Google Scholar 

  16. M. Brack, J. Damgaard, A.S. Jensen et al., Rev. Mod. Phys. 44, 320 (1972)

    ADS  Google Scholar 

  17. A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 36, 1363 (2005)

    ADS  Google Scholar 

  18. C. Xu, Z. Ren, Phys. Rev. C 75, 044301 (2007)

    ADS  Google Scholar 

  19. Y.T. Oganessian, Radiochim. Acta 99, 429 (2011)

    Google Scholar 

  20. K. Morita, K. Morimoto, D. Kaji et al., J. Phys. Soc. Jpn. 76, 045001 (2007)

    ADS  Google Scholar 

  21. E. Rutherfold, H. Geiger, Proc. R. Soc. Lond. A 81, 162 (1908)

    ADS  Google Scholar 

  22. G. Gamow, Z. Phys. 51, 204 (1928)

    ADS  Google Scholar 

  23. R.W. Gurney, E.U. Condon, Nature 122, 439 (1928)

    ADS  Google Scholar 

  24. J.M. Dong, H.F. Zhang, Y.Z. Wang et al., Eur. Phys. J. A 41, 197 (2009)

    ADS  Google Scholar 

  25. M. Concalves, S.B. Duarte, Phys. Rev. C 48, 2409 (1993)

    ADS  Google Scholar 

  26. S.B. Duarte, O. Rodriguez, M. Goncalves et al., Phys. Rev. C 57, 2516 (1998)

    ADS  Google Scholar 

  27. H.F. Zhang, G. Royer, Phys. Rev. C 76, 047307 (2007)

    ADS  Google Scholar 

  28. K.P. Santhosh, C. Nithya, H. Hassanabadi, Phys. Rev. C 98, 024625 (2018)

    ADS  Google Scholar 

  29. X.D. Sun, P. Guo, X.H. Li, Phys. Rev. C 93, 034316 (2016)

    ADS  Google Scholar 

  30. X.D. Sun, P. Guo, X.H. Li, Phys. Rev. C 94, 024338 (2016)

    ADS  Google Scholar 

  31. Y.B. Qian, Z.Z. Ren, Phys. Rev. C 85, 027306 (2012)

    ADS  Google Scholar 

  32. Y.B. Qian, Z.Z. Ren, Nucl. Phys. A 852, 82 (2011)

    ADS  Google Scholar 

  33. D.S. Delion, S. Peltonen, J. Suhonen, Phys. Rev. C 73, 014305 (2006)

  34. S. Peltonen, D.S. Delion, J. Suhonen, Phys. Rev. C 75, 054301 (2007)

    ADS  Google Scholar 

  35. K.P. Santhosh, B. Priyanka, M.S. Unnikrishnan, Nucl. Phys. A 889, 29 (2012)

    ADS  Google Scholar 

  36. P.R. Chowdhury, C. Samanta, D.N. Basu, Phys. Rev. C 77, 044603 (2008)

    ADS  Google Scholar 

  37. M. Bhattacharya, G. Gangopadhyay, Phys. Rev. C 77, 047302 (2008)

    ADS  Google Scholar 

  38. C. Xu, Z.Z. Ren, Phys. Rev. C 73, 041301 (R) (2006)

    ADS  Google Scholar 

  39. C. Xu, Z.Z. Ren, Phys. Rev. C 69, 024614 (2004)

    ADS  Google Scholar 

  40. D.D. Ni, Z.Z. Ren, Phys. Rev. C 80, 014314 (2009)

    ADS  Google Scholar 

  41. H. Geiger, J. Nuttall, Philos. Mag. 22, 613 (1911)

    Google Scholar 

  42. V.E. Viola, G.T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)

    Google Scholar 

  43. J.G. Deng, H.F. Zhang, G. Royer, Phys. Rev. C 101, 034307 (2020)

    ADS  Google Scholar 

  44. A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005)

    ADS  Google Scholar 

  45. K.P. Santhosh, S. Sabina, R.K. Biju, Nucl. Phys. A 825, 159 (2009)

    ADS  Google Scholar 

  46. G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000)

    ADS  Google Scholar 

  47. C. Qi, F.R. Xu, R.J. Liotta et al., Phys. Rev. Lett. 103, 072501 (2009)

    ADS  Google Scholar 

  48. C. Qi, F.R. Xu, R.J. Liotta et al., Phys. Rev. C 80, 044326 (2009)

    ADS  Google Scholar 

  49. Y. Hatsukawa, H. Nakahara, D.C. Hoffman, Phys. Rev. C 42, 674 (1990)

    ADS  Google Scholar 

  50. D.N. Poenaru, W. Greiner, Handbook of Nuclear Physics (Clarendon Press, Oxford, 1996). (Chap. 8)

    Google Scholar 

  51. H.M. Liu, Y.T. Zou, X. Pan et al., Chin. Phys. C 45, 024108 (2021)

    ADS  Google Scholar 

  52. J.L. Chen, J.Y. Xu, J.G. Deng et al., Eur. Phys. J. A 55, 241 (2019)

    Google Scholar 

  53. D.X. Zhu, H.M. Liu, Y.Y. Xu et al., Chin. Phys. C 4, 044106 (2022)

    ADS  Google Scholar 

  54. C. Qi, A.N. Andreyev, R. Wyss et al., Phys. Lett. B 734, 203 (2014)

    ADS  Google Scholar 

  55. C. Qi, R. Liotta, R. Wyss, Prog. Part. Nucl. Phys. 105, 214 (2019)

  56. K.P. Santhosh, R.K. Biju, A. Joseph, J. Phys. G: Nucl. Part. Phys. 35, 085102 (2008)

    ADS  Google Scholar 

  57. A. Soylu, C. Qi, Nucl. Phys. A 1013, 122221 (2021)

  58. Y.Z. Wang, S.J. Wang, Z.Y. Hou et al., Phys. Rev. C 92, 064301 (2015)

    ADS  Google Scholar 

  59. D.N. Poenaru, M. Ivascu, A. Sandulescu et al., Phys. Rev. C 32, 572 (1985)

    ADS  Google Scholar 

  60. K.P. Santhosh, A. Joseph, Pramana J. Phys. 62, 957 (2004)

    ADS  Google Scholar 

  61. Z. Ren, F. Tai, W.Q. Shen, Common. Theor. Phys. 40, 2 (2003)

    Google Scholar 

  62. Q.H. Mo, M. Liu, N. Wang, Phys. Rev. C 90, 024320 (2014)

    ADS  Google Scholar 

  63. G.L. Zhang, X.Y. Le, H.Q. Zhang, Nucl. Phys. A 823, 16 (2009)

    ADS  Google Scholar 

  64. T. Dong, Z. Ren, Phys. Rev. C 72, 064331 (2005)

    ADS  Google Scholar 

  65. T. Dong, Z. Ren, Phys. Rev. C 77, 064310 (2008)

    ADS  Google Scholar 

  66. Y.A. Lazarev, Y.V. Lobanov, Y.T. Oganessian et al., Phys. Rev. Lett. 73, 624 (1994)

    ADS  Google Scholar 

  67. J. Dvorak, W. Bruchle, M. Chelnokov et al., Phys. Rev. Lett. 97, 242501 (2006)

    ADS  Google Scholar 

  68. Y.A. Lazarev, Y.V. Lobanov, Y.T. Oganessian et al., Phys. Rev. C 54, 620 (1996)

    ADS  Google Scholar 

  69. F. Kondev, M. Wang, W. Huang et al., Chin. Phys. C 45, 030001 (2021)

    ADS  Google Scholar 

  70. W.J. Huang, M. Wang, F. Kondev et al., Chin. Phys. C 45, 030002 (2021)

    ADS  Google Scholar 

  71. M. Wang, W.J. Huang, F. Kondev et al., Chin. Phys. C 45, 030003 (2021)

    ADS  Google Scholar 

  72. P. Möller, J.R. Nix, K.L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997)

  73. S. Luo, X. Pan, X.H. Li et al., Common. Theor. Phys. 75, 025301 (2023)

    ADS  Google Scholar 

  74. A. Sobiczewski, J. Phys. G: Nucl. Part. Phys. 43, 095106 (2016)

    ADS  Google Scholar 

  75. N. Wang, M. Liu, Phys. Rev. C 84, 051303 (2011)

    ADS  Google Scholar 

  76. P. Möller, J.R. Nix, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    ADS  Google Scholar 

  77. M. Ismail, A. Adel, J. Phys. G: Nucl. Part. Phys. 46, 075105 (2019)

    ADS  Google Scholar 

  78. W.M. Seif, A.R. Abdulghany, A. Nasr, Int. J. Mod. Phys. E 31, 2250074 (2022)

    ADS  Google Scholar 

  79. K.P. Santhosh, B. Priyanka, Phys. Rev. C 90, 054614 (2014)

    ADS  Google Scholar 

  80. N. Wang, M. Liu, J. Meng et al., Phys. Lett. B 734, 215 (2014)

    ADS  Google Scholar 

  81. A.T. Kruppa, M. Bender, S. Cwiok, Phys. Rev. C 61, 034313 (2000)

    ADS  Google Scholar 

  82. https://t2.lanl.gov/nis/data/astro/molnix96/spidat.html

Download references

Acknowledgements

We would like to thank Y. Y. Xu and D. X. Zhu for useful discussions. This work is supported in part by the National Natural Science Foundation of China (Grants No. 12175100 and No. 11975132), the Construct Program of the Key Discipline in Hunan Province, the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 21B0402 and No. 18A237), the Natural Science Foundation of Hunan Province, China (Grants No. 2018JJ2321), the Innovation Group of Nuclear and Particle Physics in USC, the Shandong Province Natural Science Foundation, China (Grant No. ZR2022JQ04) and the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China (Grant No. 2019KFZ10), Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20220993).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hua Li.

Additional information

Communicated by Chong Qi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Qi, LJ., Zhang, DM. et al. An improved empirical formula of \(\alpha \) decay half-lives for superheavy nuclei. Eur. Phys. J. A 59, 125 (2023). https://doi.org/10.1140/epja/s10050-023-01040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01040-5

Navigation