Skip to main content

Advertisement

Log in

Magnetic quadrupole transitions in the relativistic energy density functional theory

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Magnetic quadrupole (M2) excitation represents a fundamental feature in atomic nucleus associated to nuclear magnetism induced by spin and orbital transition operator. Since it has only been investigated within the non-relativistic theoretical approaches, and available experimental data are rather limited, it is interesting to study the properties of M2 transitions using the framework of relativistic nuclear energy density functional. In this work the nuclear ground state is calculated with relativistic Hartree-Bogoliubov model, while the M2 excitations are described using the relativistic quasiparticle random phase approximation with the residual interaction extended with the isovector-pseudovector term. The M2 transition strength distributions are described and analyzed for closed shell nuclei \(^{16}\)O, \(^{48}\)Ca, \(^{208}\)Pb, open-shell \(^{18} \mathrm O\), \(^{42}\)Ca, \(^{56}\)Fe, and semi-magic \(^{90}\)Zr. The evolution of M2 transition properties has been investigated within the \(^{36-64} \mathrm Ca\) isotope chain. The main M2 transitions have rather rich underlying structure and detailed analysis shows that collectivity increases with the mass number due to larger number of contributing particle-hole configurations. Pairing correlations in open shell nuclei have strong effect, causing the reduction of M2 strength and shifts of the centroid energies to higher values. The analysis of M2 transition strengths indicate that considerable amount of experimental strength may be missing, mainly due to limitations to rather restricted energy ranges. The calculated M2 strengths for Ca isotopes, together with the future experimental data will allow constraining the quenching of the g factors in nuclear medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data supporting this study are included within the article.]

References

  1. K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010). (and references therein)

    ADS  Google Scholar 

  2. A. Richter, Progress in Particle and Nuclear Physics 34, 261 (1995)

    ADS  Google Scholar 

  3. Y. Fujita, B. Rubio, W. Gelletly, Progress in Particle and Nuclear Physics 66(3), 549 (2011)

    ADS  Google Scholar 

  4. R. Schwengner, S. Frauendorf, B.A. Brown, Phys. Rev. Lett. 118, 092502 (2017)

    ADS  Google Scholar 

  5. G.E. Dogotar, R.A. Eramzhyan, M. Gmitro, H.R. Kissener, E. Tinkova, Journal of Physics G: Nuclear Physics 5(12), L221 (1979)

    ADS  Google Scholar 

  6. R. Eramzhyan, M. Gmitro, H. Kissener, Nucl. Phys. A 338(2), 436 (1980)

    ADS  Google Scholar 

  7. G. Küchler, A. Richter, E. Spamer, W. Steffen, W. Knüpfer, Nucl. Phys. A 406(3), 473 (1983)

    ADS  Google Scholar 

  8. J. Kokame, K. Fukunaga, N. Inoue, H. Nakamura, Physics Letters 8(5), 342 (1964)

    ADS  Google Scholar 

  9. M. Stroetzel, A. Goldmann, Zeitschrift für Physik A Hadrons and nuclei 233(3), 245 (1970)

    Google Scholar 

  10. A. Goldmann, M. Stroetzel, Zeitschrift für Physik A Hadrons and nuclei 239(3), 235 (1970)

    Google Scholar 

  11. P. von Neumann-Cosel, F. Neumeyer, S. Nishizaki, V.Y. Ponomarev, C. Rangacharyulu, B. Reitz, A. Richter, G. Schrieder, D.I. Sober, T. Waindzoch, J. Wambach, Phys. Rev. Lett. 82, 1105 (1999)

    ADS  Google Scholar 

  12. R.A. Lindgren, W.L. Bendel, L.W. Fagg, E.C. Jones, Phys. Rev. Lett. 36, 116 (1976)

    ADS  Google Scholar 

  13. R. Frey, A. Richter, A. Schwierczinski, E. Spamer, O. Titze, W. Knüpfer, Phys. Lett. B 74(1), 45 (1978)

    ADS  Google Scholar 

  14. G. Peterson, J. Ziegler, Physics Letters 21(5), 543 (1966)

    ADS  Google Scholar 

  15. E. Boridy, J. Pearson, Nuclear Physics A 185(2), 593 (1972)

    ADS  Google Scholar 

  16. J. Friedrich, N. Voegler, H. Euteneuer, Physics Letters B 64(3), 269 (1976)

    ADS  Google Scholar 

  17. W. Knüpfer, R. Frey, A. Friebel, W. Mettner, D. Meuer, A. Richter, E. Spamer, O. Titze, Phys. Lett. B 77(4), 367 (1978)

    ADS  Google Scholar 

  18. W. Knüpfer, M.G. Huber, Phys. Rev. C 14, 2254 (1976)

    ADS  Google Scholar 

  19. V. Ponomarev, V. Soloviev, C. Stoyanov, A. Vdovin, Nucl. Phys. A 323(2), 446 (1979)

    ADS  Google Scholar 

  20. B. Castel, I. Hamamoto, Phys. Lett. B 65(1), 27 (1976)

    ADS  Google Scholar 

  21. J.S. Dehesa, Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität zu Bonn (1977)

  22. P. Ring, J. Speth, Nuclear Physics A 235(2), 315 (1974)

    ADS  Google Scholar 

  23. P. Ring, J. Speth, Physics Letters B 44(6), 477 (1973)

    ADS  Google Scholar 

  24. S. Krewald, J. Speth, Physics Letters B 52(3), 295 (1974)

    ADS  Google Scholar 

  25. G. Holzwarth, G. Eckart, Z. Physik A 283, 219 (1977)

    ADS  Google Scholar 

  26. G. Holzwarth, G. Eckart, Nucl. Phys. A 325, 1 (1979)

    ADS  Google Scholar 

  27. G. Holzwarth, G. Eckart, Nucl. Phys. A 396, 171 (1983)

    ADS  Google Scholar 

  28. G. Holzwarth, G. Eckart, Phys. Lett. B 118, 9 (1982)

    ADS  Google Scholar 

  29. B. Schwesinger, K. Pingel, G. Holzwarth, Nucl. Phys. A 341(1), 1 (1980)

    ADS  Google Scholar 

  30. M. Traini, Phys. Rev. Lett. 41, 1535 (1978)

    ADS  Google Scholar 

  31. T. Suzuki, Physics Letters B 83(2), 147 (1979)

    ADS  Google Scholar 

  32. D. Kurath, Argonne National Labaratory Report No. 97/14 (1977)

  33. E. Lipparini, S. Stringari, Physics Reports 175(3), 103 (1989)

    ADS  Google Scholar 

  34. N. Shigeru, A. Kazuhiko, Prog. Theor. Phys. 63(5), 1599 (1980)

    Google Scholar 

  35. W. Knüpfer, R. Frey, A. Friebel, W. Mettner, D. Meuer, A. Richter, E. Spamer, O. Titze, Physics Letters B 77(4), 367 (1978)

    ADS  Google Scholar 

  36. H. Toki, W. Weise, Physics Letters B 97(1), 12 (1980)

    ADS  Google Scholar 

  37. C. Rangacharyulu, W. Steffen, A. Richter, E. Spamer, O. Titze, Physics Letters B 135(1), 29 (1984)

    ADS  Google Scholar 

  38. A. Vdovin, C. Stoyanov, W. Andrejtscheff, Nuclear Physics A 440(3), 437 (1985)

    ADS  Google Scholar 

  39. J. Speth, Electric and Magnetic Giant Resonances in Nuclei (World Scientific, New York, 1991)

    Google Scholar 

  40. D.F. Geesaman, R.D. Lawson, B. Zeidman, G.C. Morrison, A.D. Bacher, C. Olmer, G.R. Burleson, W.B. Cottingame, S.J. Greene, R.L. Boudrie, C.L. Morris, R.A. Lindgren, W.H. Kelly, R.E. Segel, L.W. Swenson, Phys. Rev. C 30, 952 (1984)

    ADS  Google Scholar 

  41. A.M. Lallena, Nuclear Physics A 489(1), 70 (1988)

    ADS  Google Scholar 

  42. A. Bacher, G. Emery, W. Jones, D. Miller, G. Adams, F. Petrovich, W. Love, Physics Letters B 97(1), 58 (1980)

    ADS  Google Scholar 

  43. T. Nikšić, N. Paar, D. Vretenar, P. Ring, Comp. Phys. Comm. 185(6), 1808 (2014)

    ADS  Google Scholar 

  44. G. Kružić, T. Oishi, D. Vale, N. Paar, Phys. Rev. C 102, 044315 (2020)

    ADS  Google Scholar 

  45. G. Kružić, T. Oishi, N. Paar, Phys. Rev. C 103, 054306 (2021)

    ADS  Google Scholar 

  46. T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008)

    ADS  Google Scholar 

  47. E. Yüksel, T. Marketin, N. Paar, Phys. Rev. C 99, 034318 (2019)

    ADS  Google Scholar 

  48. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428 (1984)

  49. N. Paar, P. Ring, T. Nikšić, D. Vretenar, Phys. Rev. C 67, 034312 (2003)

    ADS  Google Scholar 

  50. J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (Springer-Verlag, Berlin-Heidelberg, 2007)

    MATH  Google Scholar 

  51. Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)

    ADS  Google Scholar 

  52. S. Kamerdzhiev, J. Speth, G. Tertychny, J. Wambach, Zeitschrift für Physik A 346, 253 (1993)

    ADS  Google Scholar 

  53. R. Schwengner, S. Frauendorf, B.A. Brown, Phys. Rev. Lett. 118, 092502 (2017)

    ADS  Google Scholar 

  54. V.F. Weisskopf, Phys. Rev. 83, 1073 (1951)

    ADS  Google Scholar 

  55. P. Ring, P. Schuck, The Nuclear Many-Body Problems (Springer-Verlag, Berlin and Heidelberg, Germany, 1980)

    Google Scholar 

  56. X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, G. Colò, Phys. Rev. C 85, 024601 (2012)

    ADS  Google Scholar 

  57. X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, G. Colò, Phys. Rev. C 85, 024601 (2012)

    ADS  Google Scholar 

  58. T. Oishi, A. Ravlić, N. Paar, Phys. Rev. C 105, 064309 (2022)

    ADS  Google Scholar 

  59. S. Müller, F. Beck, D. Meuer, A. Richter, Phys. Lett. B 113(5), 362 (1982)

    ADS  Google Scholar 

  60. P. von Neumann-Cosel, private communications (2021)

Download references

Acknowledgements

We thank Peter von Neumann-Cosel for useful discussion on magnetic transitions. This work is supported within the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique Fédérale de Lausanne, and the Project TTP-2018-07-3554 Exotic Nuclear Structure and Dynamics, with funds of the Croatian-Swiss Research Programme. This work is supported by the “QuantiXLie Centre of Excellence” project co-financed by the Croatian Government and European Union through the European Regional Development Fund, the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004). We acknowledge support by the Multidisciplinary Cooperative Research Program of the Center for Computational Sciences, University of Tsukuba, using Oakforest-PACS Systems (Project no. xg21i064, FY2021), and T.O. acknowledges the support by Takashi Nakatsukasa and Hiroyuki Kobayashi in this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Paar.

Additional information

Communicated by Takashi Nakatsukasa.

Appendix A: The analysis of contributing particle-hole transitions in M2 excited states

Appendix A: The analysis of contributing particle-hole transitions in M2 excited states

Here we display the components of M2 transitions for \(^{16}\)O, \(^{48}\)Ca, and \(^{208}\)Pb nuclei, on which discussions are presented in the main text.

See Tables 4, 5, 6, 7, 8.

Table 4 Partial contributions \(b^{\nu }_{ph}\) (neutrons) and \(b^{\pi }_{ph}\) (protons) to the dominant M2 transitions in the \(^{16}\)O nucleus. The \(E^{th.}_{peak}\) denotes the peak energy corresponding to the RRPA eigenvalue, and \(B_{M2}(E)\) is its overall transition strength
Table 5 The same as Table 4 but for \(^{48} \mathrm Ca\)
Table 6 Continuation of Table 5 for \(^{48} \mathrm Ca\)
Table 7 The same as Table 4 but for \(^{208} \mathrm Pb\)
Table 8 Continuation of Table 7 for \(^{208} \mathrm Pb\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kružić, G., Oishi, T. & Paar, N. Magnetic quadrupole transitions in the relativistic energy density functional theory. Eur. Phys. J. A 59, 50 (2023). https://doi.org/10.1140/epja/s10050-023-00958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00958-0

Navigation