Skip to main content
Log in

Vorticity in isobar collisions of \(^{96}_{44}\)Ru + \(^{96}_{44}\)Ru and \(^{96}_{40}\)Zr + \(^{96}_{40}\)Zr at \(\sqrt{{\textrm{s}}_{\textrm{NN}}}\) = 200 GeV

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The kinematic vorticity and thermal vorticity are calculated in isobar collisions of 200 GeV \(^{96}_{44}\)Ru + \(^{96}_{44}\)Ru and \(^{96}_{40}\)Zr + \(^{96}_{40}\)Zr with different deformation parameters within the framework of Ultra-relativistic Quantum Molecular Dynamics model (UrQMD), and a little difference of vorticity between \(^{96}_{44}\)Ru + \(^{96}_{44}\)Ru and \(^{96}_{40}\)Zr + \(^{96}_{40}\)Zr collisions is observed. From the ratios of (Zr-Ru)/Ru of vorticity in different deformation cases, it is found that ratios in deformation cases decrease with the increasing of centrality (i.e. more peripheral) but increase in the case without deformation. And an opposite signal is observed for ratios between nuclear collisions with deformation and without deformation. In addition, the effect of deformation parameter \(\beta _{2}\) is discussed and it is found that the larger \(\beta _{2}\) the deformation of the nuclei has, the higher vorticity the collision system presents in the \(^{96}_{40}\)Zr + \(^{96}_{40}\)Zr collisions. However, it is insensitive in the \(^{96}_{44}\)Ru + \(^{96}_{44}\)Ru collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no additional data to be attached in the draft. The source data for the manuscript can request from corresponding authors.]

References

  1. W.T. Deng, X.G. Huang, Phys. Rev. C 85, 044907 (2012). https://doi.org/10.1103/PhysRevC.85.044907

    Article  ADS  Google Scholar 

  2. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570

    Article  ADS  Google Scholar 

  3. B.I. Abelev et al., STAR Collaboration. Phys. Rev. Lett. 103, 251601 (2009). https://doi.org/10.1103/PhysRevLett.103.251601

  4. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., STAR Collaboration. Nature 548, 62–65 (2017). https://doi.org/10.1038/nature23004

  5. M.S. Abdallah et al., STAR Collaboration. Phys. Rev. Lett. 128, 092301 (2022). https://doi.org/10.1103/PhysRevLett.128.092301

  6. M.S. Abdallah et al., STAR Collaboration. Phys. Rev. C 105, 014901 (2022). https://doi.org/10.1103/PhysRevC.105.014901

  7. J. Adam, L. Adamczyk, J.R. Adams et al., Nucl. Sci. Tech. 32, 48 (2021). https://doi.org/10.1007/s41365-021-00878-y

    Article  Google Scholar 

  8. D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.01.001

    Article  ADS  Google Scholar 

  9. J. Zhao, F.Q. Wang, Prog. Part. Nucl. Phys. 107, 200 (2019). https://doi.org/10.1016/j.ppnp.2019.05.001

    Article  ADS  Google Scholar 

  10. Z.T. Liang, X.N. Wang, Phys. Rev. Lett. 94, 102301 (2005). https://doi.org/10.1103/PhysRevLett.94.102301

    Article  ADS  Google Scholar 

  11. D.E. Kharzeev, J.F. Liao, Nat. Rev. Phys. 3, 55 (2022). https://doi.org/10.1038/s42254-020-00254-6

    Article  Google Scholar 

  12. R. Fang, R. Dong, D. Hou, B. Sun, Chin. Phys. Lett. 38, 091201 (2021). https://doi.org/10.1088/0256-307X/38/9/091201

    Article  ADS  Google Scholar 

  13. H.-H. Peng, J.-J. Zhang, X.-L. Sheng, Q. Wang, Chin. Phys. Lett. 38, 116701 (2021). https://doi.org/10.1088/0256-307X/38/11/116701

    Article  ADS  Google Scholar 

  14. L.L. Gao, X.G. Huang, Chin. Phys. Lett. 39, 021101 (2021). https://doi.org/10.1088/0256-307X/39/2/021101

    Article  ADS  Google Scholar 

  15. L.G. Pang, H. Petersen, Q. Wang, X.N. Wang, Phys. Rev. Lett. 117, 192301 (2016). https://doi.org/10.1103/PhysRevLett.117.192301

    Article  ADS  Google Scholar 

  16. S.Y.F. Liu, Y.F. Sun, C.M. Ko, Phys. Rev. Lett. 125, 062301 (2020). https://doi.org/10.1103/PhysRevLett.125.062301

    Article  ADS  Google Scholar 

  17. B. Fu, S.Y.F. Liu, L. Pang, H. Song, Y. Yin, Phys. Rev. Lett. 127, 142301 (2021). https://doi.org/10.1103/PhysRevLett.127.142301

    Article  ADS  Google Scholar 

  18. F. Becattini, M. Buzzegoli, A. Palermo, G. Inghirami, I. Karpenko, Phys. Rev. Lett. 127, 272302 (2021). https://doi.org/10.1103/PhysRevLett.127.272302

    Article  ADS  Google Scholar 

  19. Y.C. Liu, X.G. Huang, Sci. China Phys. Mech. Astron. 65, 272011 (2022). https://doi.org/10.1007/s11433-022-1903-8

    Article  ADS  Google Scholar 

  20. J.H. Gao, G.L. Ma, S. Pu, Q. Wang, Nucl. Sci. Tech. 31, 90 (2020). https://doi.org/10.1007/s41365-020-00801-x

    Article  Google Scholar 

  21. Y.C. Liu, X.G. Huang, Nucl. Sci. Tech. 31, 56 (2020). https://doi.org/10.1007/s41365-020-00764-z

    Article  Google Scholar 

  22. F. Becattini, M. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020). https://doi.org/10.1146/annurev-nucl-021920-095245

    Article  ADS  Google Scholar 

  23. C.Z. Wang, W.Y. Wu, Q.Y. Shou, G.L. Ma, Y.G. Ma, S. Zhang, Phys. Lett. B 820, 136580 (2021). https://doi.org/10.1016/j.physletb.2021.136580

    Article  Google Scholar 

  24. X.L. Zhao, G.L. Ma, Y.G. Ma, Phys. Rev. C 99, 034903 (2019). https://doi.org/10.1103/PhysRevC.99.034903

    Article  ADS  Google Scholar 

  25. Q.Y. Shou, G.L. Ma, Y.G. Ma, Phys. Rev. C 90, 047901 (2014). https://doi.org/10.1103/PhysRevC.90.047901

    Article  ADS  Google Scholar 

  26. X.-G. Deng, X.-G. Huang, Y.-G. Ma, Phys. Lett. B 835, 137560 (2022). https://doi.org/10.1016/j.physletb.2022.137560

    Article  Google Scholar 

  27. M. S. Abdallah, B. E. Aboona, J. Adam, et al. (STAR Collaboration). https://doi.org/10.48550/arXiv.2204.02302

  28. X.-L. Sheng, L. Oliva, Q. Wang, Phys. Rev. D 101, 096005 (2020). https://doi.org/10.1103/PhysRevD.101.096005

    Article  ADS  Google Scholar 

  29. X. R. Gou, Measurements of global and local polarization of hyperons in 200 GeV isobar collisions from STAR, Strangeness in Quark Matter (2022). https://indico.cern.ch/event/1037821/contributions/4841756/

  30. A. Lei, D. Wang, D.M. Zhou, B.H. Sa, L.P. Csernai, Phys. Rev. C 104, 054903 (2021). https://doi.org/10.1103/PhysRevC.104.054903

    Article  ADS  Google Scholar 

  31. X.G. Deng, X.G. Huang, Y.G. Ma, S. Zhang, Phys. Rev. C 101, 064908 (2020). https://doi.org/10.1103/PhysRevC.101.064908

    Article  ADS  Google Scholar 

  32. Y. Jiang, Z.W. Lin, J.F. Liao, Phys. Rev. C 94, 044910 (2016). https://doi.org/10.1103/PhysRevC.94.044910

    Article  ADS  Google Scholar 

  33. H. Li, L.G. Pang, Q. Wang, X.L. Xia, Phys. Rev. C 96, 054908 (2017). https://doi.org/10.1103/PhysRevC.96.054908

    Article  ADS  Google Scholar 

  34. W.T. Deng, X.G. Huang, Phys. Rev. C 93, 064907 (2016). https://doi.org/10.1103/PhysRevC.93.064907

    Article  ADS  Google Scholar 

  35. M.S. Abdallah, B.E. Aboona, J. Adam et al., STAR Collaboration. Phys. Rev. C 104, L061901 (2021). https://doi.org/10.1103/PhysRevC.104.L061901

  36. F. J. Kornas (HADES Collaboration), EPJ Web Conf. 259, 11016 (2022). https://doi.org/10.1051/epjconf/202225911016

  37. V.D. Kekelidze et al., Phys. Part. Nucl. 48, 727–741 (2017). https://doi.org/10.1134/S1063779617050239

    Article  Google Scholar 

  38. F. Li, Y.-G. Ma, S. Zhang, G.-L. Ma, Q. Shou, Phys. Rev. C 106, 014906 (2022). https://doi.org/10.1103/PhysRevC.106.014906

    Article  ADS  Google Scholar 

  39. Y.-G. Ma, S. Zhang, Influence of Nuclear Structure in Relativistic Heavy-Ion Collisions. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-15-8818-1_5-1

  40. J. Hammelmann, A. Soto-Ontoso, M. Alvioli, H. Elfner, M. Strikman, Phys. Rev. C 101, 061901(R) (2020). https://doi.org/10.1103/PhysRevC.101.061901

    Article  ADS  Google Scholar 

  41. H.J. Xu, H.L. Li, X.B. Wang, C.W. Shen, F.Q. Wang, Phys. Lett. B 819, 136453 (2021). https://doi.org/10.1016/j.physletb.2021.136453

    Article  Google Scholar 

  42. Z.W. Xu, S. Zhang, Y.G. Ma, J.H. Chen, C. Zhong, Nucl. Sci. Tech. 29, 186 (2018). https://doi.org/10.1007/s41365-018-0523-9

    Article  Google Scholar 

  43. M. Bleicher et al., J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999). https://doi.org/10.1088/0954-3899/25/9/308

    Article  ADS  Google Scholar 

  44. S. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998). https://doi.org/10.1016/S0146-6410(98)00058-1

    Article  ADS  Google Scholar 

  45. M.M. Aggarwal et al., STAR Collaboration. Phys. Rev. C 82, 024905 (2010). https://doi.org/10.1103/PhysRevC.82.024905

  46. J. Adam et al., STAR Collaboration. Phys. Rev. C 99, 044918 (2019). https://doi.org/10.1103/PhysRevC.99.044918

  47. M.S. Abdallah et al., STAR Collaboration. Phys. Rev. C 104, L061901 (2021). https://doi.org/10.1103/PhysRevC.104.L061901

  48. M.S. Abdallah et al., STAR Collaboration. Phys. Rev. Lett. 128, 202303 (2022). https://doi.org/10.1103/PhysRevLett.128.202303

  49. X.-G. Huang et al., Lecture Notes in Physics, vol 987. Springer, Cham. (2021). https://doi.org/10.1007/978-3-030-71427-7_9

  50. P. Li, J. Steinheimer, T. Reichert, A. Kittiratpattana, M. Bleicher, Q. Li, Sci. China Phys. Mech. Astron. 66, 232011 (2023). https://doi.org/10.1007/s11433-022-2041-8

    Article  ADS  Google Scholar 

  51. Xian-Gai. Deng, Yu-Gang. Ma, Phys. Lett. B 808, 135668 (2020). https://doi.org/10.1016/j.physletb.2020.135668

    Article  Google Scholar 

  52. R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577 (1954). https://doi.org/10.1103/PhysRev.95.577

    Article  ADS  Google Scholar 

  53. W.T. Deng, X.G. Huang, G.L. Ma, G. Wang, Phys. Rev. C 94, 041901 (2016). https://doi.org/10.1103/PhysRevC.94.041901

    Article  ADS  Google Scholar 

  54. H.L. Li et al., Phys. Rev. C 98, 054907 (2018). https://doi.org/10.1103/PhysRevC.98.054907

    Article  ADS  Google Scholar 

  55. X.G. Cao, G.Q. Zhang, X.Z. Cai et al., Phys. Rev. C 81, 061603 (2010). https://doi.org/10.1103/PhysRevC.81.061603

    Article  ADS  Google Scholar 

  56. Q.Y. Shou, Y.G. Ma, P. Sorensen, A.H. Tang, F. Videbaek, H. Wang, Phys. Lett. B 749, 215 (2015). https://doi.org/10.1016/j.physletb.2015.07.078

    Article  ADS  Google Scholar 

  57. S.S. Wang, Y.G. Ma, X.G. Cao, W.B. He, H.Y. Kong, C.W. Ma, Phys. Rev. C 95, 054615 (2017). https://doi.org/10.1103/PhysRevC.95.054615

    Article  ADS  Google Scholar 

  58. L. Zhou, D.Q. Fang, Nucl. Sci. Tech. 31, 52 (2020). https://doi.org/10.1007/s41365-020-00759-w

    Article  Google Scholar 

  59. C. Liu, S.Y.C. Wang, B. Qi, H. Jia, Chin. Phys. Lett. 37, 112101 (2020). https://doi.org/10.1088/0256-307X/37/11/112101

    Article  ADS  Google Scholar 

  60. C. Chen, Q.K. Sun, Y.X. Li, T.T. Sun, Sci. China Phys. Mech. Astro. 64, 282011 (2021). https://doi.org/10.1007/s11433-021-1721-1

  61. X.Z. Wang, Q.L. Niu, J.J. Zhang, M.J. Lyu, J. Liu, C. Xu, Z.Z. Ren, Sci. China Phys. Mech. Astro. 64, 292011 (2021). https://doi.org/10.1007/s11433-021-1729-5

    Article  ADS  Google Scholar 

  62. G. Giacalone, J.Y. Jia, C.J. Zhang, Phys. Rev. Lett. 127, 242301 (2021). https://doi.org/10.1103/PhysRevLett.127.242301

    Article  ADS  Google Scholar 

  63. C.J. Zhang, J.Y. Jia, Phys. Rev. Lett. 128, 022301 (2022). https://doi.org/10.1103/PhysRevLett.127.242301

    Article  ADS  Google Scholar 

  64. A. V. Mahesh Babu, N. Sowmya, H. C. Manjunatha et al., Nucl. Sci. Tech. 33, 67 (2022).https://doi.org/10.1007/s41365-022-01060-8

  65. F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338, 32 (2013). https://doi.org/10.1016/j.aop.2013.07.004

    Article  ADS  Google Scholar 

  66. R.H. Fang, L.G. Pang, Q. Wang, X.N. Wang, Phys. Rev. C 94, 024904 (2016). https://doi.org/10.1103/PhysRevC.94.024904

    Article  ADS  Google Scholar 

  67. C. Hartnack, R.K. Puri, J. Aichelin, J. Konopka, S.A. Bass, H. Stocker, W. Greiner, Eur. Phys. J. A 1, 151 (1998). https://doi.org/10.1007/s100500050045

    Article  ADS  Google Scholar 

  68. Z.W. Lin, Phys. Rev. C 90, 014904 (2014). https://doi.org/10.1103/PhysRevC.90.014904

    Article  ADS  Google Scholar 

  69. Y. Jiang, Z.W. Lin, J. Liao, Phys. Rev. C 94, 044910 (2016). https://doi.org/10.1103/PhysRevC.94.044910

    Article  ADS  Google Scholar 

  70. S. Shi, K. Li, J. Liao, Phys. Lett. B 788, 409 (2019). https://doi.org/10.1016/j.physletb.2018.09.066

    Article  ADS  Google Scholar 

  71. Y. Sun, Z. Zhang, C.M. Ko, W. Zhao, Phys. Rev. C 105, 034911 (2022). https://doi.org/10.1103/PhysRevC.105.034911

    Article  ADS  Google Scholar 

  72. C. M. Ko, Some topics in hadron production from heavy ion collisions, Strangeness in Quark Matter (2022). https://indico.cern.ch/event/1037821/contributions/4853854/

  73. K. F. Shen, Initial electromagnetic field dependence of photon-induced production in isobaric collisions at STAR, Strangeness in Quark Matter (2022). https://indico.cern.ch/event/1037821/contributions/4842068/

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under contract Nos. 11890714, 12147101, and 12205049, the National Key R &D Program of China under Grant Nos. 2018YFE0104600, Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008, and China Postdoctoral Innovative Talent Program of China No. BX20200098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

Communicated by C. Ko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, BS., Deng, XG., Zhang, S. et al. Vorticity in isobar collisions of \(^{96}_{44}\)Ru + \(^{96}_{44}\)Ru and \(^{96}_{40}\)Zr + \(^{96}_{40}\)Zr at \(\sqrt{{\textrm{s}}_{\textrm{NN}}}\) = 200 GeV. Eur. Phys. J. A 59, 33 (2023). https://doi.org/10.1140/epja/s10050-023-00932-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00932-w

Navigation