Skip to main content
Log in

Effect of source size and emission time on the p–p momentum correlation function in the two-proton emission process

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The effect of source size and emission time on the proton–proton (p–p) momentum correlation function (\(C_\mathrm{pp}(q)\)) has been studied systematically. Assuming a spherical Gaussian source with space and time profile according to the function \(S(r,t)\sim \exp (-r^2/2r_{0}^{2}-t/\tau )\) in the correlation function calculation code (CRAB), the results indicate that one \(C_\mathrm{pp}(q)\) distribution corresponds to a unique combination of source size \(r_0\) and emission time \(\tau \). Considering the possible nuclear deformation from a spherical nucleus, an ellipsoidal Gaussian source characterized by the deformation parameter \(\epsilon =\Delta {R}/R\) has been simulated. There is almost no difference of \(C_\mathrm{pp}(q)\) between the results of spherically and ellipsoidally shaped sources with small deformation. These results indicate that a unique source size \(r_0\) and emission time could be extracted from the p–p momentum correlation function, which is especially important for identifying the mechanism of two-proton emission from proton-rich nuclei. Furthermore, considering the possible existence of cluster structures within a nucleus, the double Gaussian source is assumed. The results show that the p–p momentum correlation function for a source with or without cluster structures has large systematical differences with the variance of \(r_{0}\) and \(\tau \). This may provide a possible method for experimentally observing the cluster structures in proton-rich nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Pfutzner, M. Karny, L.V. Grigorenkoet et al., Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84, 567 (2012). https://doi.org/10.1103/RevModPhys.84.567

    Article  Google Scholar 

  2. B. Blank, M. Ploszajczak, Two-proton radioactivity. Rep. Prog. Phys. 71, 046301 (2008). https://doi.org/10.1088/0034-4885/71/4/046301

    Article  Google Scholar 

  3. E. Olsen, M. Pfuttzner, N. Birge et al., Landscape of two-proton radioactivity. Phys. Rev. Lett. 110, 222501 (2013). https://doi.org/10.1103/PhysRevLett.110.222501

    Article  Google Scholar 

  4. K.W. Brown, R.J. Charity, L.G. Sobotka et al., Observation of long-range three-body Coulomb effects in the decay of \({^{16}\!\text{Ne}}.\) Phys. Rev. Lett. 113, 232501 (2014). https://doi.org/10.1103/PhysRevLett.113.232501

    Article  Google Scholar 

  5. V.I. Goldansky, On neutron-deficient isotopes of light nuclei and the phenomena of proton and two-proton radioactivity. Nucl. Phys. 19, 482 (1960). https://doi.org/10.1016/0029-5582(60)90258-3

    Article  Google Scholar 

  6. Y.T. Wang, D.Q. Fang, X.X. Xu et al., Implantation-decay method to study the \(\beta \)-delayed charged particle decay. Nucl. Sci. Tech. 29, 98 (2018). https://doi.org/10.1007/s41365-018-0438-5

    Article  Google Scholar 

  7. Z.Q. Zhang, Y.G. Ma, Measurements of momentum correlation and interaction parameters between antiprotons. Nucl. Sci. Tech. 27, 152 (2016). https://doi.org/10.1007/s41365-016-0147-x

    Article  Google Scholar 

  8. R.A. Kryger, A. Azhari, M. Hellstrom et al., Two-proton emission from the ground state of \({^{12}\!\text{O}}.\) Phys. Rev. Lett. 74, 860 (1995). https://doi.org/10.1103/PhysRevLett.74.860

    Article  Google Scholar 

  9. G. Raciti, G. Cardella, M. De Napoli et al., Experimental evidence of \({^{2}\!\text{He}}\) decay from \({^{18}\!\text{Ne}}\) excited states. Phys. Rev. Lett. 100, 192503 (2008). https://doi.org/10.1103/PhysRevLett.100.192503

    Article  Google Scholar 

  10. Y.G. Ma, D.Q. Fang, X.Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei \({^{23}\!{\text{Al}}}\) and \({^{22}\!\text{Mg}}.\) Phys. Lett. B 743, 306 (2015). https://doi.org/10.1016/j.physletb.2015.02.066

    Article  Google Scholar 

  11. M.A. Lisa, C.K. Gelbke, P. Decowski et al., Observation of lifetime effects in two-proton correlations for well-characterized sources. Phys. Rev. Lett. 71, 2863 (1993). https://doi.org/10.1103/PhysRevLett.71.2863

    Article  Google Scholar 

  12. G. Verde, A. Chbihi, R. Ghetti et al., Correlations and characterization of emitting sources. Eur. Phys. J. A 30, 81 (2006). https://doi.org/10.1140/epja/i2006-10109-6

    Article  Google Scholar 

  13. W.A. Zajc, J.A. Bistirlich, R.R. Bossingham et al., Two-pion correlations in heavy ion collisions. Phys. Rev. C 29, 2173 (1984). https://doi.org/10.1103/PhysRevC.29.2173

    Article  Google Scholar 

  14. D.Q. Fang, Y.G. Ma, X.Y. Sun et al., Proton–proton correlations in distinguishing the two-proton emission mechanism of \({^{23}\!{\text{Al}}}\) and \({^{22}\!\text{ Mg}}.\) Phys. Rev. C 94, 044621 (2016). https://doi.org/10.1103/PhysRevC.94.044621

    Article  Google Scholar 

  15. S. Pratt, J. Sullivan, H. Sorge et al., Testing transport theories with correlation measurements. Nucl. Phys. A 566, 103c (1994). https://doi.org/10.1016/0375-9474(94)90614-9

    Article  Google Scholar 

  16. M. Aygun, Z. Aygun, A theoretical study on different cluster configurations of the \({^{9}\!\text{Be}}\) nucleus by using a simple cluster model. Nucl. Sci. Tech. 28, 86 (2017). https://doi.org/10.1007/s41365-017-0239-2

    Article  Google Scholar 

  17. C. Constantinou, M.A. Caprio, J.P. Vary et al., Natural orbital description of the halo nucleus \({^{6}\!\text{He}}.\) Nucl. Sci. Tech. 28, 179 (2017). https://doi.org/10.1007/s41365-017-0332-6

    Article  Google Scholar 

  18. W. von Oertzen, M. Freer, Y. Kanada-En’yo, Nuclear clusters and nuclear molecules. Phys. Rep. 432, 43 (2006). https://doi.org/10.1016/j.physrep.2006.07.001

    Article  Google Scholar 

  19. Y. Liu, J.J. Zhu, N. Roberts et al., Recovery of saturated signal waveform acquired from high-energy particles with artificial neural networks. Nucl. Sci. Tech. 30, 148 (2019). https://doi.org/10.1007/s41365-019-0677-0

    Article  Google Scholar 

  20. H.K. Yang, K.C. Liang, K.J. Kang et al., Slice-wise reconstruction for low-dose cone-beam CT using a deep residual convolutional neural network. Nucl. Sci. Tech. 30, 59 (2019). https://doi.org/10.1007/s41365-019-0581-7

    Article  Google Scholar 

  21. H.L. Zheng, X.G. Tuo, S.M. Peng et al., Determination of Gamma point source efficiency based on a back-propagation neural network. Nucl. Sci. Tech. 29, 61 (2018). https://doi.org/10.1007/s41365-018-0410-4

    Article  Google Scholar 

  22. A. Gheziel, S. Hanini, B. Mohamedi et al., Particle dispersion modeling in ventilated room using artificial neural network. Nucl. Sci. Tech. 28, 5 (2017). https://doi.org/10.1007/s41365-016-0159-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Qing Fang.

Additional information

This work is partially supported by the National Key R&D Program of China (No. 2018YFA0404404), the National Natural Science Foundation of China (Nos. 11925502, 11935001, 11961141003, 11421505, 11475244, and 11927901), the Shanghai Development Foundation for Science and Technology (No. 19ZR1403100), the Strategic Priority Research Program of the CAS (No. XDB34030000), and the Key Research Program of Frontier Sciences of the CAS (No. QYZDJ-SSW-SLH002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Fang, DQ. Effect of source size and emission time on the p–p momentum correlation function in the two-proton emission process. NUCL SCI TECH 31, 52 (2020). https://doi.org/10.1007/s41365-020-00759-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00759-w

Keywords

Navigation