Skip to main content
Log in

Nuclear fragmentation reactions as a probe of neutron skins in nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the contributions of various reaction channels to the interaction, reaction, charge-changing and neutron-changing cross sections. The goal is to investigate the relation between microscopic interactions and the symmetry energy component of the equation of state (EoS) of interest for the structure of neutron stars. We compare the neutron skins extracted from diverse experimental techniques with those obtained with Hartree–Fock–Bogoliubov calculations using 23 Skyrme and with eight density-dependent interactions used in the relativistic mean-field method. We show that no particular conclusion can be drawn on the best EoS in view of the wide range of uncertainty in the experimental data. We further investigate the prospects of using neutron-changing reactions to assess the isospin dependence of the neutron skin in neutron-rich nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statemen

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Notes

  1. The value and error bar reported in Ref. [33] are a combination of two separate measurements, denoted as PREX-1 and PREX-2.

References

  1. G. Baym, T. Hatsuda, T. Kojo, P.D. Powell, Y. Song, T. Takatsuka, From hadrons to quarks in neutron stars: a review. Rep. Prog. Phys. 81(5), 056902 (2018)

    Article  MathSciNet  Google Scholar 

  2. J.W. Holt, Y. Lim, Universal correlations in the nuclear symmetry energy, slope parameter, and curvature. Phys. Lett. B 784, 77–81 (2018)

    Article  Google Scholar 

  3. J.M. Lattimer, Neutron stars and the nuclear matter equation of state. Ann. Rev. Nucl. Part. Sci. 71(1), 433–464 (2021)

    Article  Google Scholar 

  4. N.H.D. Khoa, N.H. Tan, D.T. Khoa, Spin symmetry energy and equation of state of spin-polarized neutron star matter. Phys. Rev. C 105, 065802 (2022)

    Article  Google Scholar 

  5. X. Roca-Maza, M. Centelles, X. Viñas, M. Warda, Neutron skin of \(^{208}\)Pb, nuclear symmetry energy, and the parity radius experiment. Phys. Rev. Lett. 106, 252501 (2011)

    Article  Google Scholar 

  6. X. Roca-Maza, X. Viñas, M. Centelles, B.K. Agrawal, G. Colò, N. Paar, J. Piekarewicz, D. Vretenar, Neutron skin thickness from the measured electric dipole polarizability in \(^{68}\)Ni, \(^{120}\)Sn, and \(^{208}\)Pb. Phys. Rev. C 92, 064304 (2015)

    Article  Google Scholar 

  7. M. Beiner, H. Flocard, N. Van Giai, P. Quentin, Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (i). Spherical description. Nucl. Phys. A 238(1), 29–69 (1975)

    Article  Google Scholar 

  8. H.S. Köhler, Skyrme force and the mass formula. Nucl. Phys. A 258(2), 301–316 (1976)

    Article  Google Scholar 

  9. J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Håkansson, Towards a better parametrisation of Skyrme-like effective forces: a critical study of the SkM force. Nucl. Phys. A 386(1), 79–100 (1982)

    Article  Google Scholar 

  10. J. Dobaczewski, H. Flocard, J. Treiner, Hartree–Fock–Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422(1), 103–139 (1984)

    Article  Google Scholar 

  11. M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, S. Wild, Axially deformed solution of the Skyrme–Hartree–Fock–Bogoliubov equations using the transformed harmonic oscillator basis (ii) hfbtho v2.00d: a new version of the program. Comput. Phys. Commun. 184(6), 1592–1604 (2013)

    Article  Google Scholar 

  12. L. Bennour, P.-H. Heenen, P. Bonche, J. Dobaczewski, H. Flocard, Charge distributions of \(^{208}{\rm Pb}\), \(^{206}{\rm Pb}\), and \(^{205}{\rm Tl}\) and the mean-field approximation. Phys. Rev. C 40, 2834–2839 (1989)

    Article  Google Scholar 

  13. P.-G. Reinhard, H. Flocard, Nuclear effective forces and isotope shifts. Nucl. Phys. A 584(3), 467–488 (1995)

    Article  Google Scholar 

  14. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627(4), 710–746 (1997)

    Article  Google Scholar 

  15. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A skyrme parametrization from subnuclear to neutron star densities part ii. Nuclei far from stabilities. Nucl. Phys. A 635(1), 231–256 (1998)

    Article  Google Scholar 

  16. B. Alex Brown, New Skyrme interaction for normal and exotic nuclei. Phys. Rev. C 58, 220–231 (1998)

    Article  Google Scholar 

  17. P.-G. Reinhard, D.J. Dean, W. Nazarewicz, J. Dobaczewski, J.A. Maruhn, M.R. Strayer, Shape coexistence and the effective nucleon-nucleon interaction. Phys. Rev. C 60, 014316 (1999)

    Article  Google Scholar 

  18. B.K. Agrawal, S. Shlomo, V. Kim Au, Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models. Phys. Rev. C 68, 031304 (2003)

    Article  Google Scholar 

  19. S. Goriely, M. Samyn, J.M. Pearson, M. Onsi, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. iv: Neutron-matter constraint. Nucl. Phys. A 750(2), 425–443 (2005)

    Article  Google Scholar 

  20. M. Dutra, O. Lourenço, J.S. Sá Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85, 035201 (2012)

    Article  Google Scholar 

  21. S.K. Dhiman, R. Kumar, B.K. Agrawal, Nonrotating and rotating neutron stars in the extended field theoretical model. Phys. Rev. C 76, 045801 (2007)

    Article  Google Scholar 

  22. B.K. Agrawal, Asymmetric nuclear matter and neutron skin in an extended relativistic mean-field model. Phys. Rev. C 81, 034323 (2010)

    Article  Google Scholar 

  23. R. Kumar, B.K. Agrawal, S.K. Dhiman, Effects of \(\omega \) meson self-coupling on the properties of finite nuclei and neutron stars. Phys. Rev. C 74, 034323 (2006)

    Article  Google Scholar 

  24. G.A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A.V. Afanasjev, P. Ring, The effective force nl3 revisited. Phys. Lett. B 671(1), 36–41 (2009)

    Article  Google Scholar 

  25. M. Rashdan, Structure of exotic nuclei and superheavy elements in a relativistic shell model. Phys. Rev. C 63, 044303 (2001)

    Article  Google Scholar 

  26. G.A. Lalazissis, J. König, P. Ring, New parametrization for the lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540–543 (1997)

    Article  Google Scholar 

  27. G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, New relativistic mean-field interaction with density-dependent meson–nucleon couplings. Phys. Rev. C 71, 024312 (2005)

    Article  Google Scholar 

  28. W. Long, J. Meng, N. Van Giai, S.-G. Zhou, New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson–nucleon coupling. Phys. Rev. C 69, 034319 (2004)

    Article  Google Scholar 

  29. B.V. Carlson, D. Hirata, Dirac–Hartree–Bogoliubov approximation for finite nuclei. Phys. Rev. C 62, 054310 (2000)

    Article  Google Scholar 

  30. C.A. Bertulani, J. Valencia, Neutron skins as laboratory constraints on properties of neutron stars and on what we can learn from heavy ion fragmentation reactions. Phys. Rev. C 100, 015802 (2019)

    Article  Google Scholar 

  31. G.F. Burgio, H.-J. Schulze, I. Vidana, J.-B. Wei, Neutron stars and the nuclear equation of state. Prog. Part. Nucl. Phys. 120, 103879 (2021)

    Article  Google Scholar 

  32. X. Viñas, M. Centelles, X. Roca-Maza, M. Warda, Density dependence of the symmetry energy from neutron skin thickness in finite nuclei. Eur. Phys. J. A 50(2), 27 (2014)

    Article  Google Scholar 

  33. D. Adhikari et al., Accurate determination of the neutron skin thickness of \(^{208}\)Pb through parity-violation in electron scattering. Phys. Rev. Lett. 126, 172502 (2021)

    Article  Google Scholar 

  34. A. Tamii et al., Complete electric dipole response and the neutron skin in Pb-208. Phys. Rev. Lett. 107(6), (2011)

  35. B. Blank et al., Charge-changing cross sections of the neutron-rich isotopes \(^{8,9,11}\)Li. Z. Phys. A Hadrons Nucl. 343(4), 375–379 (1992)

    Article  Google Scholar 

  36. T. Yamaguchi, I. Hachiuma, A. Kitagawa, K. Namihira, S. Sato, T. Suzuki, I. Tanihata, M. Fukuda, Scaling of charge-changing interaction cross sections and point-proton radii of neutron-rich carbon isotopes. Phys. Rev. Lett. 107, 032502 (2011)

    Article  Google Scholar 

  37. S. Terashima et al., Proton radius of \(^{14}\)Be from measurement of charge-changing cross sections. Prog. Theor. Exp. Phys. 2014(10), 101D02 (2014)

    Article  Google Scholar 

  38. A. Estradé et al., Proton radii of \(^{12-17}{\rm B}\) define a thick neutron surface in \(^{17}{\rm B}\). Phys. Rev. Lett. 113, 132501 (2014)

    Article  Google Scholar 

  39. D.T. Tran et al., Charge-changing cross-section measurements of \(^{12-16}\)C at around \(45\)A MeV and development of a glauber model for incident energies \(10-2100\)A MeV. Phys. Rev. C 94, 064604 (2016)

    Article  Google Scholar 

  40. T. Aumann, C.A. Bertulani, F. Schindler, S. Typel, Peeling off neutron skins from neutron-rich nuclei: constraints on the symmetry energy from neutron-removal cross sections. Phys. Rev. Lett. 119, 262501 (2017)

    Article  Google Scholar 

  41. J. Hüfner, K. Schäfer, B. Schürmann, Abrasion-ablation in reactions between relativistic heavy ions. Phys. Rev. C 12, 1888–1898 (1975)

    Article  Google Scholar 

  42. M.S. Hussein, R.A. Rego, C.A. Bertulani, Microscopic theory of the total cross-section and application to stable and exotic nuclei. Phys. Rep. 201(5), 279–334 (1991)

    Article  Google Scholar 

  43. B.V. Carlson, R.C. Mastroleo, M.S. Hussein, Fragment production in heavy-ion reactions. Phys. Rev. C 46, R30–R33 (1992)

    Article  Google Scholar 

  44. B.V. Carlson, Microscopic abrasion-ablation approximation to projectile fragmentation. Phys. Rev. C 51, 252–268 (1995)

    Article  Google Scholar 

  45. C.A. Bertulani, P. Danielewicz, Introduction to Nuclear Reactions, 2nd edn. (CRC Press, London, 2021)

    Book  Google Scholar 

  46. W.J. Swiatecki, J.D. Bowman, C.F. Tsang, LBL Report LBL-2908 (unpublished), (1973)

  47. C.A. Bertulani, Heavy ion reaction cross-sections. Braz. J. Phys. 16, 380–412 (1986)

    Google Scholar 

  48. C.A. Bertulani, Density dependence of in-medium nucleon–nucleon cross sections. J. Phys. G 27(8), L67–L71 (2001)

    Article  Google Scholar 

  49. C.A. Bertulani, C. De Conti, Pauli blocking and medium effects in nucleon knockout reactions. Phys. Rev. C 81(6), (2010)

  50. E. Clementel, C. Villi, The nucleon effective mass and the statistical model of the nucleus. Il Nuovo Cimento (1955–1965) 9(6), 950–989 (1958)

    Article  MATH  Google Scholar 

  51. P. Ring, P. Schuck, The Nuclear Many-Body Problem. Texts and Monographs in Physics (Springer, Heidelberg, 2004)

    Google Scholar 

  52. R.F. Carlson et al., Proton total reaction cross sections for the doubly magic nuclei \(^{16}{\rm O}\), \(^{40}{\rm Ca}\), and \(^{208}{\rm Pb}\) in the energy range 20–50 MeV. Phys. Rev. C 12, 1167–1175 (1975)

    Article  Google Scholar 

  53. A. Ingemarsson et al., Reaction cross sections for 65 MeV protons on targets from 9Be to 208Pb. Nucl. Phys. A 653(4), 341–354 (1999)

    Article  Google Scholar 

  54. A. Auce et al., Reaction cross sections for protons on \(^{12}{\rm C},^{40}{\rm Ca},^{90}{\rm Zr}\), and \(^{208}{\rm Pb}\) at energies between 80 and 180 MeV. Phys. Rev. C 71, 064606 (2005)

    Article  Google Scholar 

  55. S. Tagami, T. Wakasa, J. Matsui, M. Yahiro, M. Takechi, Neutron skin thickness of \(^{208}{\rm Pb}\) determined from the reaction cross section for proton scattering. Phys. Rev. C 104, 024606 (2021)

    Article  Google Scholar 

  56. M. Takechi et al., Reaction cross sections at intermediate energies and fermi-motion effect. Phys. Rev. C 79, 061601 (2009)

    Article  Google Scholar 

  57. A. Ozawa, T. Suzuki, I. Tanihata, Nuclear size and related topics. Nucl. Phys. A 693(1), 32–62 (2001). (Radioactive Nuclear Beams)

    Article  Google Scholar 

  58. A.S. Goldhaber, Statistical models of fragmentation processes. Phys. Lett. B 53(4), 306–308 (1974)

    Article  Google Scholar 

  59. L. Bertocchi, A. Tékou, Fermi-motion effects in neutron stripping cross-section from relativistic deuteron-nucleus collisions. Il Nuovo Cimento A (1965–1970) 21(2), 223–235 (1974)

    Article  Google Scholar 

  60. W.G. Lynch, Nuclear fragmentation in proton- and heavy-ion-induced reactions. Ann. Rev. Nucl. Part. Sci. 37(1), 493–535 (1987)

    Article  MathSciNet  Google Scholar 

  61. G.W. Fan, W.Y. Kong, T.F. Han, X. Li, J.B. Ma, Z.Q. Sheng, G.Z. Shi, F. Tian, J. Wang, C. Zhang, Fermi-motion effect on the intermediate energy nucleus–nucleus collision. Mod. Phys. Lett. A 31, 1650216 (2016)

    Article  Google Scholar 

  62. S.J. Wallace, Eikonal expansion. Phys. Rev. Lett. 27, 622–625 (1971)

    Article  Google Scholar 

  63. J.S. Wallace, Eikonal expansion. Ann. Phys. 78(1), 190–257 (1973)

    Article  Google Scholar 

  64. M. Buuck, G.A. Miller, Corrections to the eikonal approximation for nuclear scattering at medium energies. Phys. Rev. C 90, 024606 (2014)

    Article  Google Scholar 

  65. C. Hebborn, P. Capel, Analysis of corrections to the eikonal approximation. Phys. Rev. C 96, 054607 (2017)

    Article  Google Scholar 

  66. C.A. Bertulani, Relativistic continuum–continuum coupling in the dissociation of halo nuclei. Phys. Rev. Lett. 94, 072701 (2005)

    Article  Google Scholar 

  67. W.H. Long, C.A. Bertulani, Nucleus–nucleus interaction between boosted nuclei. Phys. Rev. C 83, 024907 (2011)

    Article  Google Scholar 

  68. B.G. Todd-Rutel, J. Piekarewicz, Neutron-rich nuclei and neutron stars: a new accurately calibrated interaction for the study of neutron-rich matter. Phys. Rev. Lett. 95, 122501 (2005)

    Article  Google Scholar 

  69. W. Bauhoff, Tables of reaction and total cross sections for proton–nucleus scattering below 1 GeV. At. Data Nucl. Data Tables 35(3), 429–447 (1986)

    Article  Google Scholar 

  70. W.R. Webber, J.C. Kish, D.A. Schrier, Individual charge changing fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets. Phys. Rev. C 41, 533–546 (1990)

    Article  Google Scholar 

  71. F. Flesch, G. Iancu, W. Heinrich, H. Yasuda, Projectile fragmentation of silicon ions at 490 A Mev. Radiat. Meas. 34(1), 237–240 (2001). (Proceedings of the 20th International Conference on Nuclear Tracks in Solids)

    Article  Google Scholar 

  72. C. Zeitlin, A. Fukumura, S.B. Guetersloh, L.H. Heilbronn, Y. Iwata, J. Miller, T. Murakami, Fragmentation cross sections of 28Si at beam energies from 290A to 1200A MeV. Nucl. Phys. A 784(1), 341–367 (2007)

    Article  Google Scholar 

  73. S. Cecchini et al., Fragmentation cross sections of Fe26, Si14 and C6 ions of 0.3–10 A GeV on polyethylene, CR39 and aluminum targets. Nucl. Phys. A 807(3), 206–213 (2008)

    Article  Google Scholar 

  74. T. Yamaguchi et al., Energy-dependent charge-changing cross sections and proton distribution of \(^{28}{\rm Si}\). Phys. Rev. C 82, 014609 (2010)

    Article  Google Scholar 

  75. J.-S. Li, D.-H. Zhang, J.-X. Cheng, S. Kodaira, N. Yasuda, Fragmentation cross sections of 788A MeV 28Si on carbon and polyethylene targets. Chin. J. Phys. 54(2), 314–317 (2016)

    Article  Google Scholar 

  76. J.-S. Li, Y.-H. Dang, D.-H. Zhang, J.-X. Cheng, S. Kodaira, N. Yasuda, Charge-changing cross sections of 736A MeV \(^{28}\)Si on carbon targets. Chin. Phys. Lett. 34(10), 102501 (2017)

    Article  Google Scholar 

  77. M. Tanaka et al., Swelling of doubly magic \(^{48}{\rm Ca}\) core in ca isotopes beyond \(n=28\). Phys. Rev. Lett. 124, 102501 (2020)

    Article  Google Scholar 

  78. S. Yamaki, et al., Systematic study of individual charge-changing cross sections of intermediate-energy secondary beams. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 774–778, (2013). XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2-7, 2012 at Matsue, Japan

  79. D. Adhikari et al., Precision determination of the neutral weak form factor of \(^{48}\)Ca. Phys. Rev. Lett. 129, 042501 (2022)

    Article  Google Scholar 

  80. G.A. Lalazissis, J. König, P. Ring, New parametrization for the lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540–543 (1997)

    Article  Google Scholar 

  81. T.W. Donnelly, J. Dubach, I. Sick, Isospin dependences in parity-violating electron scattering. Nucl. Phys. A 503(3), 589–631 (1989)

    Article  Google Scholar 

  82. C.J. Horowitz, S.J. Pollock, P.A. Souder, R. Michaels, Parity violating measurements of neutron densities. Phys. Rev. C 63, 025501 (2001)

    Article  Google Scholar 

  83. M. Thiel, C. Sfienti, J. Piekarewicz, C.J. Horowitz, M. Vanderhaeghen, Neutron skins of atomic nuclei: per aspera ad astra. J. Phys. G Nucl. Part. Phys. 46(9), 093003 (2019)

  84. A. Trzcińska, J. Jastrzȩbski, P. Lubiński, F.J. Hartmann, R. Schmidt, T. von Egidy, B. Kłos, Neutron density distributions deduced from antiprotonic atoms. Phys. Rev. Lett. 87, 082501 (2001)

  85. J. Jastrzebski, A. Trzcinska, P. Lubinski, B. Klos, F.J. Hartmann, T. von Egidy, S. Wycech, Neutron density distributions from antiprotonic atoms compared with hadron scattering data. Int. J. Mod. Phys. E 13(01), 343–351 (2004)

    Article  Google Scholar 

  86. S. Abrahamyan et al., Measurement of the neutron radius of \(^{208}\)Pb through parity violation in electron scattering. Phys. Rev. Lett. 108, 112502 (2012)

    Article  Google Scholar 

  87. J. Jastrzebski, H. Daniel, T. von Egidy, A. Grabowska, Y.S. Kim, W. Kurcewicz, P. Lubiński, G. Riepe, W. Schmid, A. Stolarz, S. Wycech, Signature of a neutron halo in 232Th from antiproton absorption. Nucl. Phys. A 558, 405–414 (1993)

  88. R. Schmidt, F.J. Hartmann, T. von Egidy, T. Czosnyka, J. Iwanicki, J. Jastrzȩbski, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, A. Trzcińska, J. Kulpa, R. Smolańczuk, S. Wycech, B. Kłos, K. Gulda, W. Kurcewicz, E. Widmann, Nucleon density of \({}^{172}{\rm Yb}\) and \({}^{176}{\rm Yb}\) at the nuclear periphery determined with antiprotonic x rays. Phys. Rev. C 58, 3195–3204 (1998)

    Article  Google Scholar 

  89. E. Friedman, A. Gal, J. Mares, Antiproton-nucleus potentials from global fits to antiprotonic X-rays and radiochemical data. Nucl. Phys. A 761(3), 283–295 (2005)

    Article  Google Scholar 

  90. R. Lazauskas, A. Obertelli, personal communication

  91. L. Ray, Neutron isotopic density differences deduced from 0.8 GeV polarized proton elastic scattering. Phys. Rev. C 19, 1855–1872 (1979)

    Article  Google Scholar 

  92. M. Csatlos et al., Measurement of neutron-skin thickness in 208Pb by excitation of the GDR via inelastic \(\alpha \)-scattering. Nucl. Phys. A 719, C304–C307 (2003)

    Article  Google Scholar 

  93. A. Krasznahorkay et al., Excitation of isovector spin-dipole resonances and neutron skin of nuclei. Phys. Rev. Lett. 82, 3216–3219 (1999)

    Article  Google Scholar 

  94. A. Krasznahorkay et al., Neutron-skin thickness in neutron-rich isotopes. Nucl. Phys. A 731, 224–234 (2004)

    Article  Google Scholar 

  95. G.W. Hoffmann et al., Elastic scattering of 500 MeV polarized protons from \(^{40,48}\)Ca, \(^{90}\)Zr, and \(^{208}\)Pb, and breakdown of the impulse approximation at small momentum transfer. Phys. Rev. Lett. 47, 1436–1440 (1981)

    Article  Google Scholar 

  96. T. Aumann, A. Horvat, Constraining energy-density functionals and the density-dependence of the symmetry energy by measurements of accurate cross sections with large acceptance at R3B. GSI-PAC (2020)

Download references

Acknowledgements

E.A.T. acknowledges partial support by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES). T.A. acknowledges support by the German Federal Ministry of Education and Research (BMBF, project 05P2015RDFN1). C.A.B. acknowledges support by the U.S. DOE Grant DE-FG02-08ER41533 and the Helmholtz Research Academy Hesse for FAIR. B.V.C. acknowledges support from Grant 2017/05660-0 of the São Paulo Research Foundation (FAPESP), Grant 303131/2021-7 of the CNPq and the INCT-FNA project 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Bertulani.

Additional information

Communicated by Arnau Rios Huguet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, E.A., Aumann, T., Bertulani, C.A. et al. Nuclear fragmentation reactions as a probe of neutron skins in nuclei. Eur. Phys. J. A 58, 205 (2022). https://doi.org/10.1140/epja/s10050-022-00849-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00849-w

Navigation