Skip to main content
Log in

Research on the exotic properties of nuclei from the light to medium mass region

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The relativistic point-coupling model combined with complex momentum representation method (RMFPC-CMR method) is used to investigate the exotic phenomena in the neutron-rich Si, S, Ar, Ti, Cr, and Fe isotopes. The calculated two-neutron separation energies are compared with the relativistic Hartree–Bogoliubov calculations as well as the available experimental data. It is found that the new magic number \(N=34\) appears in Si and S isotopes and the traditional magic numbers \(N=28\) (in Si isotopes) and 50 (in Si, S, Ar, and Ti isotopes) disappear. In addition, the calculated single-particle energies and occupation probabilities of the bound and resonant states support the results and indicate that a neutron halo may occur on the neutron-rich side of Ti, Cr, and Fe isotopes. We also calculate the density distributions of neutrons and protons, and the ratios of the densities of the single-particle levels to the total neutron density. The results show that \(^{76-80}\)Ti (\(N=54-58\)), \(^{76-82}\)Cr (\(N=52-58\)), and \(^{80-84}\)Fe (\(N=54-58\)) isotopes are possible halo nuclei, while Si, S, and Ar isotopes prefer to neutron skin. The prediction on the structure of halo and skin in the neutron-rich Si, S, Ar, Ti, Cr, and Fe isotopes are of referential value for experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated or analyzed during the current studies are available from the corresponding author on reasonable request. The data are not publicly available due to privacy or ethical restrictions.]

References

  1. I. Tanihata, J. Phys. G: Nucl. Part. Phys. 22, 157 (1996)

    Article  ADS  Google Scholar 

  2. A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000)

    Article  ADS  Google Scholar 

  3. D. Steppenbeck, S. Takeuchi, N. Aoi et al., Nature 502(7470), 207–210 (2013)

    Article  ADS  Google Scholar 

  4. A. Navin, D.W. Anthony, T. Aumann et al., Phys. Rev. Lett. 85, 266 (2000)

    Article  ADS  Google Scholar 

  5. H. Iwasaki, T. Motobayashi, H. Akiyoshi et al., Phys. Lett. B 491(1–2), 8–14 (2000)

    Article  ADS  Google Scholar 

  6. D. Guillemaud-Mueller, C. Detraz, M. Langevin et al., Nucl. Phys. A 426, 37 (1984)

    Article  ADS  Google Scholar 

  7. T. Motobayashi, Y. Ikeda, K. Ieki et al., Phys. Lett. B 346(1–2), 9–14 (1995)

    Article  ADS  Google Scholar 

  8. J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996)

    Article  ADS  Google Scholar 

  9. I. Tanihata, H. Hamagaki, O. Hashimoto et al., Phys. Lett. B 160, 380 (1985)

    Article  ADS  Google Scholar 

  10. M.V. Zhukov, B.V. Danilin, D.V. Fedorov et al., Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  11. I. Tanihata, T. Kobayashi, O. Yamakawa et al., Phys. Lett. B 206, 592 (1985)

    Article  ADS  Google Scholar 

  12. M. Fukuda, T. Ichihara, N. Inabe et al., Phys. Lett. B 268, 339 (1991)

    Article  ADS  Google Scholar 

  13. M. Zahar, M. Belbot, J.J. Kolata et al., Phys. Rev. C 48, R1484 (1993)

    Article  ADS  Google Scholar 

  14. I.J. Thompson, M.V. Zhukov, Phys. Rev. C 53, 708 (1996)

    Article  ADS  Google Scholar 

  15. Z.H. Yang, Y. Kubota, A. Corsi et al., Phys. Rev. Lett. 126, 082501 (2021)

    Article  ADS  Google Scholar 

  16. K.J. Cook, T. Nakamura, Y. Kondo et al., Phys. Rev. Lett. 124, 212503 (2020)

    Article  ADS  Google Scholar 

  17. D. Bazin, B.A. Brown, J. Brown et al., Phys. Rev. Lett. 74, 3569 (1995)

    Article  ADS  Google Scholar 

  18. R. Kanungo, I. Tanihata, Y. Ogawa et al., Nucl. Phys. A 701, 378 (2002)

    Article  ADS  Google Scholar 

  19. K. Tanaka, T. Yamaguchi, T. Suzuki et al., Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  20. X.-X. Sun, J. Zhao, S.-G. Zhou, Phys. Lett. B 785, 530 (2018)

    Article  ADS  Google Scholar 

  21. S. Bagchi, R. Kanungo, Y.K. Tanaka et al., Phys. Rev. Lett. 124, 222504 (2020)

    Article  ADS  Google Scholar 

  22. N. Michel, J.G. Li, F.R. Xu, W. Zuo, Phys. Rev. C 101, 031301(R) (2020)

    Article  ADS  Google Scholar 

  23. T. Nakamura, N. Kobayashi, Y. Kondo et al., Phys. Rev. Lett. 103, 262501 (2009)

    Article  ADS  Google Scholar 

  24. N. Kobayashi, T. Nakamura, Y. Kondo et al., Phys. Rev. Lett. 112, 242501 (2014)

    Article  ADS  Google Scholar 

  25. T. Minamisono, T. Ohtsubo, I. Minami et al., Phys. Rev. Lett. 69, 2058 (1992)

    Article  ADS  Google Scholar 

  26. W. Schwab, H. Geissel, H. Lenske et al., Z. Phys. A 350, 283 (1995)

    Article  ADS  Google Scholar 

  27. R.E. Warner, J.H. Kelley, P. Zecher et al., Phys. Rev. C 52, R1166 (1995)

    Article  ADS  Google Scholar 

  28. F. Negoita, C. Borcea, F. Carstoiu et al., Phys. Rev. C 54, 1787 (1996)

    Article  ADS  Google Scholar 

  29. R. Kanungo, M. Chiba, S. Adhikari et al., Phys. Lett. B 571, 21 (2003)

    Article  ADS  Google Scholar 

  30. H. Jeppesen, R. Kanungo, B. Abu-Ibrahim et al., Nucl. Phys. A 739, 57 (2004)

    Article  ADS  Google Scholar 

  31. R. Morlock, R. Kunz, A. Mayer et al., Phys. Rev. Lett. 79, 3837 (1997)

    Article  ADS  Google Scholar 

  32. Z. Ren, A. Faessler, A. Boby, Phys. Rev. C 57, 2752 (1988)

    Article  ADS  Google Scholar 

  33. C.J. Lin, Z.H. Liu, H.Q. Zhang et al., Chin. Phys. Lett. 18, 1183 (2001)

    Article  ADS  Google Scholar 

  34. Z.H. Liu, C.J. Lin, H.Q. Zhang et al., Phys. Rev. C 64, 034312 (2001)

    Article  ADS  Google Scholar 

  35. I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)

    Article  ADS  Google Scholar 

  36. W. Poschl, D. Vretenar, G.A. Lalazissis, P. Ring, Phys. Rev. Lett. 79, 3841 (1997)

    Article  ADS  Google Scholar 

  37. G.A. Lalazissis, D. Vretenar, W. Poschl, P. Ring, Nucl. Phys. A 632, 363 (1998)

    Article  ADS  Google Scholar 

  38. J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998)

    Article  ADS  Google Scholar 

  39. J. Meng, H. Toki, S.G. Zhou et al., Prog. Part. Nucl. Phys. 57, 470 (2006)

    Article  ADS  Google Scholar 

  40. S.G. Zhou, J. Meng, P. Ring, E.G. Zhao, Phys. Rev. C 82, 011301(R) (2010)

    Article  ADS  Google Scholar 

  41. V. Rotival, T. Duguet, Phys. Rev. C 79, 054308 (2009)

    Article  ADS  Google Scholar 

  42. A.U. Hazi, H.S. Taylor, Phys. Rev. A 1, 1109 (1970)

    Article  ADS  Google Scholar 

  43. V. I. Kukulin, V. M. Krasnopl\(\acute{s}\)ky, J. Hor\(\acute{a}\)cek, (Kluwer, Dordrecht) (1989)

  44. J. Aguilar, J.M. Combes, Commun. Math. Phys. 22, 269 (1971)

    Article  ADS  Google Scholar 

  45. E. Balslev, J.M. Combes, Commun. Math. Phys. 22, 280 (1971)

    Article  ADS  Google Scholar 

  46. B. Simon, Commun. Math. Phys. 27, 1 (1972)

    Article  ADS  Google Scholar 

  47. N. Li, M. Shi, J.Y. Guo et al., Phys. Rev. Lett. 117, 062502 (2016)

    Article  ADS  Google Scholar 

  48. M. Shi, Z.M. Niu, H.Z. Liang, Phys. Rev. C 97, 064301 (2018)

    Article  ADS  Google Scholar 

  49. Z. Fang, M. Shi, J.Y. Guo et al., Phys. Rev. C 95, 024311 (2017)

    Article  ADS  Google Scholar 

  50. Y.J. Tian, Q. Liu, T.H. Heng, J.Y. Guo, Phys. Rev. C 95, 064329 (2017)

    Article  ADS  Google Scholar 

  51. X.N. Cao, Q. Liu, J.Y. Guo, J. Phys. G: Nucl. Part. Phys. 45, 085105 (2018)

    Article  ADS  Google Scholar 

  52. X.N. Cao, Q. Liu, J.Y. Guo, Phys. Rev. C 99, 014309 (2019)

    Article  ADS  Google Scholar 

  53. K.M. Ding, M. Shi, J.Y. Guo et al., Phys. Rev. C 98, 014316 (2018)

    Article  ADS  Google Scholar 

  54. X.N. Cao, Q. Liu, Z.M. Niu, J.Y. Guo, Phys. Rev. C 99, 024314 (2019)

    Article  ADS  Google Scholar 

  55. X.W. Wang, J.Y. Guo, Phys. Rev. C 104, 044315 (2021)

    Article  ADS  Google Scholar 

  56. J. Meng, H. Toki, J.Y. Zeng, S.Q. Zhang, S.G. Zhou, Phys. Rev. C 65, 041302(R) (2002)

    Article  ADS  Google Scholar 

  57. I. Hamamoto, Phys. Rev. C 81, 021304(R) (2010)

    Article  ADS  Google Scholar 

  58. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984)

    Article  ADS  Google Scholar 

  59. J. Li, Z. Ma, B. Chen, Y. Zhou, Phys. Rev. C 65, 064305 (2002)

    Article  ADS  Google Scholar 

  60. N. Sandulescu, R.J. Liotta, R. Wyss, Phys. Lett. B 394, 6 (1997)

    Article  ADS  Google Scholar 

  61. N. Sandulescu, N. Van Giai, R.J. Liotta, Phys. Rev. C 61, 061301(R) (2000)

    Article  ADS  Google Scholar 

  62. A.T. Kruppa, P.H. Heenen, R.J. Liotta, Phys. Rev. C 63, 044324 (2001)

    Article  ADS  Google Scholar 

  63. G.G. Dussel, R. Id Betan, R.J. Liotta, T. Vertse, Nucl. Phys. A 789, 182 (2007)

    Article  ADS  Google Scholar 

  64. N. Sandulescu, L.S. Geng, H. Toki, G.C. Hillhouse, Phys. Rev. C 68, 054323 (2003)

    Article  ADS  Google Scholar 

  65. B.A. Nikolaus, T. Hoch, D.G. Madland, Phys. Rev. C 46, 1757 (1992)

    Article  ADS  Google Scholar 

  66. T. Burvenich, D.G. Madland, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 65, 044308 (2002)

    Article  ADS  Google Scholar 

  67. J.L. Friar, D.G. Madland, B.W. Lynn, Phys. Rev. C 53, 3085 (1996)

    Article  ADS  Google Scholar 

  68. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  69. P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)

    Article  ADS  Google Scholar 

  70. X.M. Hua, T.H. Heng, Z.M. Niu, B.H. Sun, J.Y. Guo, Sci. China: Phys. Mech. Astron. 55, 2414 (2012)

    ADS  Google Scholar 

  71. Q.S. Zhang, Z.M. Niu, Z.P. Li, J.M. Yao, J. Meng, Front. Phys. 9, 529 (2014)

    Article  ADS  Google Scholar 

  72. X.W. Xia et al., At. Data Nucl. Data Tables 121–122, 1 (2018)

    Article  ADS  Google Scholar 

  73. Z.P. Li, B.Y. Song, J.M. Yao, D. Vretenar, J. Meng, Phys. Lett. B 726, 866 (2013)

    Article  ADS  Google Scholar 

  74. Y. Fu, H. Mei, J. Xiang, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 87, 054305 (2013)

    Article  ADS  Google Scholar 

  75. Z.M. Niu, Y.F. Niu, Q. Liu, H.Z. Liang, J.Y. Guo, Phys. Rev. C 87, 051303(R) (2013)

    Article  ADS  Google Scholar 

  76. Z.Y. Wang, Y.F. Niu, Z.M. Niu, J.Y. Guo, J. Phys. G: Nucl. Part. Phys. 43, 045108 (2016)

    Article  ADS  Google Scholar 

  77. Y. Wang, Z.M. Niu, M. Shi, J.Y. Guo, J. Phys. G: Nucl. Part. Phys. 46, 125103 (2019)

    Article  ADS  Google Scholar 

  78. X.N. Cao, K.M. Ding, M. Shi, Q. Liu, J.Y. Guo, Phys. Rev. C 102, 044313 (2020)

    Article  ADS  Google Scholar 

  79. S. Bhattacharyya, M. Rejmund et al., Phys. Rev. Lett. 101(3), 032501 (2008)

    Article  ADS  Google Scholar 

  80. V. Thakur, S.K. Dhiman, Nucl. Phys. A 992, 121623 (2019)

    Article  Google Scholar 

  81. D. Rudolph, C. Andreoiu, M.A. Bentley et al., Phys. Rev. C 104, 044314 (2021)

    Article  ADS  Google Scholar 

  82. T. Duguet, Few-Body Syst. 57, 343–359 (2016)

    Article  ADS  Google Scholar 

  83. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Book  Google Scholar 

  84. A. Bohr, B.R. Mottelson, Nuclear Structure (Benjamin, New York, 1969)

    MATH  Google Scholar 

  85. National Nuclear Data Center. http://www.nndc.bnl.gov

  86. G. Saxena, M. Kumawat, M. Aggarwal, Int. J. Mod. Phys. E 28, 11 (2019)

    Google Scholar 

  87. X.W. Xia, Chin. Phys. C 40, 074101 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Zhong-Ming Niu for constructive guidance and valuable suggestions. This work was partly supported by the National Natural Science Foundation of China under Grants No. 11935001 and No. 11575002 the Open fund for Discipline Construction, Institute of Management Science and Engineering, Anhui University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Neng Cao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XN., Fu, M., Zhou, XX. et al. Research on the exotic properties of nuclei from the light to medium mass region. Eur. Phys. J. Plus 137, 906 (2022). https://doi.org/10.1140/epjp/s13360-022-03128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03128-1

Navigation