Skip to main content
Log in

A semi-microscopic approach to transfer reactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We develop a semi-microscopic model to describe transfer reactions. For the sake of simplicity, we focus on nucleon-transfer reactions, but the theory can be generalized to other transfer processes. The model makes use of overlap integrals computed in the microscopic Resonating Group Method (RGM). This technique is based on an effective nucleon-nucleon interaction and on the cluster approximation. It avoids the choice of a nucleon-core potential for the residual nucleus, and does not require any fit of spectroscopic factors. The model is therefore free of parameter. For the entrance channel, we use the Continuum Discretized Coupled Channel (CDCC) method where the breakup of the projectile is simulated by approximations of the continuum. This technique is well known for elastic scattering and for breakup reactions. It is well adapted to weakly bound nuclei such as the deuteron. The model is applied to the \(^{14}\mathrm{C}(d,p)^{15}C\) and \(^{6}\mathrm{He}(d,n)^{7}Li\) reactions with RGM wave functions of \(^{15}\)C and of \(^7\)Li. The \(^{15}\)C nucleus is described by \(^{14}\mathrm{C}(0^+,2^+)+n\) configurations whereas \(^7\)Li contains the \(\alpha +t\), \(^{6}\mathrm{He}(0^+)+p\) and \(^{6}\mathrm{Li}(1^+,0^+)+n\) configurations. The spectroscopic factors are in fair agreement with the literature. We show that the model provides an excellent description of the transfer cross sections considering that no parameter is adjusted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the data shown in the paper are available from the corresponding author, upon request.]

References

  1. S.T. Butler, Phys. Rev. 80, 1095 (1950)

    Article  Google Scholar 

  2. M.H. Macfarlane, J.B. French, Rev. Mod. Phys. 32, 567 (1960)

    Article  Google Scholar 

  3. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, 1983)

  4. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Google Scholar 

  5. N. Glendenning, Direct nuclear reactions (World Scientific, Singapore, 2004)

    Book  MATH  Google Scholar 

  6. N. Timofeyuk, R. Johnson, Prog. Part. Nucl. Phys. 111, 103738 (2020)

    Article  Google Scholar 

  7. K. Wimmer, J. Phys. G 45, 033002 (2018)

    Article  Google Scholar 

  8. J. Gómez Camacho, A.M. Moro, The Euroschool, on Exotic Beams, Vol. IV (Springer, Berlin Heidelberg, Berlin, Heidelberg, chap (Application to Weakly-Bound and Unbound Exotic Nuclei, A Pedestrian Approach to the Theory of Transfer Reactions, 2014), pp.39–66

  9. R.E. Tribble, C.A. Bertulani, M.L. Cognata, A.M. Mukhamedzhanov, C. Spitaleri, Rep. Prog. Phys. 77, 106901 (2014)

    Article  Google Scholar 

  10. A.M. Mukhamedzhanov, L.D. Blokhintsev, Eur. Phys. J. A 58, 29 (2022)

    Article  Google Scholar 

  11. P. Shubhchintak, Descouvemont. Phys. Rev. C 100, 034611 (2019)

    Article  Google Scholar 

  12. D. Baye, Phys. Rep. 565, 1 (2015)

    Article  MathSciNet  Google Scholar 

  13. P. Descouvemont, Phys. Rev. C 104, 024613 (2021)

    Article  Google Scholar 

  14. H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977)

    Article  Google Scholar 

  15. K. Wildermuth, Y.C. Tang, A unified theory of the nucleus (Vieweg, Braunschweig, 1977)

    Book  Google Scholar 

  16. P. Descouvemont, M. Dufour, Clusters in Nuclei, Vol.2 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), chap. Microscopic Cluster Models, pp. 1–66

  17. K. Varga, R.G. Lovas, Phys. Rev. C 37, 2906 (1988)

    Article  Google Scholar 

  18. M. Yahiro, T. Matsumoto, K. Minomo, T. Sumi, S. Watanabe, Prog. Theor. Phys. Supp. 196, 87 (2012)

    Article  Google Scholar 

  19. M. Gomez-Ramos, A.M. Moro, Phys. Rev. C 95, 044612 (2017)

    Article  Google Scholar 

  20. A.M. Mukhamedzhanov, V. Burjan, M. Gulino, Z. Hons, V. Kroha, M. McCleskey, J. Mrázek, N. Nguyen, F.M. Nunes, Š Piskoř et al., Phys. Rev. C 84, 024616 (2011)

    Article  Google Scholar 

  21. Z.H. Li, E.T. Li, B. Guo, X.X. Bai, Y.J. Li, S.Q. Yan, Y.B. Wang, G. Lian, J. Su, B.X. Wang et al., Eur. Phys. J. A 44, 1 (2010)

    Article  Google Scholar 

  22. A.M. Moro, F.M. Nunes, R.C. Johnson, Phys. Rev. C 80, 064606 (2009)

    Article  Google Scholar 

  23. M.J. Dinmore, N.K. Timofeyuk, J.S. Al-Khalili, R.C. Johnson, Phys. Rev. C 99, 064612 (2019)

    Article  Google Scholar 

  24. N.K. Timofeyuk, M.J. Dinmore, J.S. Al-Khalili, Phys. Rev. C 102, 064616 (2020)

    Article  Google Scholar 

  25. P. Descouvemont, Phys. Rev. C 97, 064607 (2018)

    Article  Google Scholar 

  26. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  Google Scholar 

  27. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010)

    Article  Google Scholar 

  28. I. Brida, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 84, 024319 (2011)

    Article  Google Scholar 

  29. P. Descouvemont, N. Itagaki, Prog. Theor. Exp. Phys. 2020, 023D02 (2020)

  30. T. Kajino, Nucl. Phys. A 460, 559 (1986)

    Article  Google Scholar 

  31. S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008)

    Article  Google Scholar 

  32. D. Baye, P.H. Heenen, M. Libert-Heinemann, Nucl. Phys. A 291, 230 (1977)

    Article  Google Scholar 

  33. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  MathSciNet  Google Scholar 

  34. P. Descouvemont, Comput. Phys. Commun. 200, 199 (2016)

    Article  Google Scholar 

  35. D. Baye, N.K. Timofeyuk, Phys. Lett. B 293, 13 (1992)

    Article  Google Scholar 

  36. N.K. Timofeyuk, J. Phys. G 41, 094008 (2014)

    Article  Google Scholar 

  37. N.K. Timofeyuk, J. Phys. G 48, 015105 (2020)

    Article  Google Scholar 

  38. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. 83, 157 (2011)

  39. R. Reifarth, M. Heil, C. Forssén, U. Besserer, A. Couture, S. Dababneh, L. Dörr, J. Görres, R.C. Haight, F. Käppeler et al., Phys. Rev. C 77, 015804 (2008)

    Article  Google Scholar 

  40. N.K. Timofeyuk, D. Baye, P. Descouvemont, R. Kamouni, I.J. Thompson, Phys. Rev. Lett. 96, 162501 (2006)

    Article  Google Scholar 

  41. M. McCleskey, A.M. Mukhamedzhanov, L. Trache, R.E. Tribble, A. Banu, V. Eremenko, V.Z. Goldberg, Y.W. Lui, E. McCleskey, B.T. Roeder et al., Phys. Rev. C 89, 044605 (2014)

    Article  Google Scholar 

  42. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  Google Scholar 

  43. A. Deltuva, Phys. Rev. C 99, 024613 (2019)

    Article  Google Scholar 

  44. P. Descouvemont, Phys. Lett. B 772, 1 (2017)

    Article  Google Scholar 

  45. E.G. Adelberger, A. García, R.G.H. Robertson, K.A. Snover, A.B. Balantekin, K. Heeger, M.J. Ramsey-Musolf, D. Bemmerer, A. Junghans, C.A. Bertulani et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  Google Scholar 

  46. T. Neff, Phys. Rev. Lett. 106, 042502 (2011)

    Article  Google Scholar 

  47. J. Dohet-Eraly, P. Navrátil, S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, Phys. Lett. B 757, 430 (2016)

    Article  Google Scholar 

  48. K. Arai, D. Baye, P. Descouvemont, Nucl. Phys. A 699, 963 (2002)

    Article  Google Scholar 

  49. M. Munch, C. Matei, S.D. Pain, M.T. Febbraro, K.A. Chipps, H.J. Karwowski, C.A. Diget, A. Pappalardo, S. Chesnevskaya, G.L. Guardo et al., Phys. Rev. C 101, 055801 (2020)

    Article  Google Scholar 

  50. S. Jun, L. Zhi-Hong, G. Bing, B. Xi-Xiang, L. Zhi-Chang, L. Jian-Cheng, W. You-Bao, L. Gang, Z. Sheng, W. Bao-Xiang et al., Chin. Phys. Lett. 27, 052101 (2010)

    Article  Google Scholar 

  51. C.R. Brune, W.H. Geist, R.W. Kavanagh, K.D. Veal, Phys. Rev. Lett. 83, 4025 (1999)

    Article  Google Scholar 

  52. N. Oulebsir, F. Hammache, P. Roussel, M.G. Pellegriti, L. Audouin, D. Beaumel, A. Bouda, P. Descouvemont, S. Fortier, L. Gaudefroy et al., Phys. Rev. C 85, 035804 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to A. Moro, A. Mukhamedzhanov and D.Y. Pang for useful discussions on the \(^{14}\mathrm{C}(d,p)^{15}C\) reaction. This work was supported by the Fonds de la Recherche Scientifique—FNRS under Grant Numbers 4.45.10.08 and J.0049.19. It benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement No. 1117545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Descouvemont.

Additional information

Communicated by Nicolas Alamanos.

Directeur de Recherches FNRS.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Descouvemont, P. A semi-microscopic approach to transfer reactions. Eur. Phys. J. A 58, 193 (2022). https://doi.org/10.1140/epja/s10050-022-00840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00840-5

Navigation