Skip to main content

A Pedestrian Approach to the Theory of Transfer Reactions: Application to Weakly-Bound and Unbound Exotic Nuclei

  • Chapter
The Euroschool on Exotic Beams, Vol. IV

Part of the book series: Lecture Notes in Physics ((LNP,volume 879))

Abstract

The present status of the theoretical description of transfer reactions is pedagogically presented. It is shown how transfer, from a complicated many-body problem, can be reduced to a three-body problem, introducing spectroscopic amplitudes. The quantum three-body scattering process is described increasing the complexity, starting from Distorted Wave Born Approximation, introducing implicitly break-up effects in Adiabatic Wave Approximation, introducing explicitly break-up effects in Continuum Discretized Coupled channels, and introducing rearrangement couplings in Coupled Reaction Channels. The two latter formalisms are expressed as approximations to the rigorous three-body Faddeev treatment. The application of these formalisms to transfer to weakly bound and unbound exotic nuclei is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, both two-body continua are part of the same three-body continuum, namely, p+n+10Be. In principle, a complete basis of either sub-system would be sufficient to describe the three-body continuum. In practice, an accurate description of the full three-body continuum might require a very large basis and so, in actual calculations, using a truncated basis, a suitable choice of the continuum representation can be important [46].

References

  1. G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford, 1983)

    Google Scholar 

  2. N. Austern, R.M. Drisko, E.C. Halbert, G.R. Satchler, Theory of finite-range distorted-waves calculations. Phys. Rev. 133, B3 (1964)

    Article  ADS  Google Scholar 

  3. N. Austern, Direct Nuclear Reaction Theories (Wiley, New York, 1970)

    Google Scholar 

  4. T. Tamura, Compact reformulation of distorted-wave and coupled-channel born approximations for transfer reactions between nuclei. Phys. Rep. 14, 59 (1974)

    Article  ADS  Google Scholar 

  5. N.K. Glendenning, Direct Nuclear Reactions (World Scientific, Singapore, 2004)

    Book  MATH  Google Scholar 

  6. J. Sharpey-Schafer, The mean square radius of nuclear matter and spectroscopic factors from the DWBA. Phys. Lett. B 26, 652 (1968)

    Article  ADS  Google Scholar 

  7. J.L.C. Ford, K.S. Toth, G.R. Satchler, D.C. Hensley, L.W. Owen, R.M. DeVries, R.M. Gaedke, P.J. Riley, S.T. Thornton, Single-nucleon transfer reactions induced by 11B ions on 208Pb: a test of the distorted-wave Born approximation. Phys. Rev. C 10, 1429 (1974)

    Article  ADS  Google Scholar 

  8. K.S. Toth, J.L.C. Ford, G.R. Satchler, E.E. Gross, D.C. Hensley, S.T. Thornton, T.C. Schweizer, Measurements and analysis of the 208Pb(12C, 13C), (12C, 11B), and (12C, 14C) reactions. Phys. Rev. C 14, 1471 (1976)

    Article  ADS  Google Scholar 

  9. T. Tamura, T. Udagawa, M.C. Mermaz, Direct reaction analyses of heavy-ion induced reactions leading to discrete states. Phys. Rep. 65, 345 (1980)

    Article  ADS  Google Scholar 

  10. R.C. Johnson, P.J.R. Soper, Contribution of deuteron breakup channels to deuteron stripping and elastic scattering. Phys. Rev. C 1, 976 (1970)

    Article  ADS  Google Scholar 

  11. H. Amakawa, S. Yamaji, A. Mori, K. Yazaki, Adiabatic treatment of elastic deuteron-nucleus scattering. Phys. Lett. B 82, 13 (1979)

    Article  ADS  Google Scholar 

  12. H. Amakawa, K. Yazaki, Adiabatic treatment of deuteron break-up on a nucleus. Phys. Lett. B 87, 159 (1979)

    Article  ADS  Google Scholar 

  13. R.C. Johnson, P.C. Tandy, An approximate three-body theory of deuteron stripping. Nucl. Phys. A 235, 56 (1974)

    Article  ADS  Google Scholar 

  14. J.D. Harvey, R.C. Johnson, Influence of breakup channels on the analysis of deuteron stripping reactions. Phys. Rev. C 3, 636 (1971)

    Article  ADS  Google Scholar 

  15. G.R. Satchler, Adiabatic deuteron model and the 208Pb(p,d) reaction at 22 MeV. Phys. Rev. C 4, 1485 (1971)

    Article  ADS  Google Scholar 

  16. G.L. Wales, R.C. Johnson, Deuteron break-up effects in (p,d) reactions at 65 MeV. Nucl. Phys. A 274, 168 (1976)

    Article  ADS  Google Scholar 

  17. N.K. Timofeyuk, R.C. Johnson, Deuteron stripping and pick-up on halo nuclei. Phys. Rev. C 59, 1545 (1999)

    Article  ADS  Google Scholar 

  18. M. Kawai, Chapter II. Formalism of the method of coupled discretized continuum channels. Prog. Theor. Phys. Suppl. 89(Suppl. 1), 11 (1986)

    Article  ADS  Google Scholar 

  19. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions. Phys. Rep. 154, 125 (1987)

    Article  ADS  Google Scholar 

  20. G.H. Rawitscher, Effect of deuteron breakup on (d,p) cross sections. Phys. Rev. C 11, 1152 (1975)

    Article  ADS  Google Scholar 

  21. Y. Iseri, M. Yahiro, M. Nakano, Investigation of adiabatic approximation of deuteron-breakup effect on (d,p) reactions. Prog. Theor. Phys. 69, 1038 (1983)

    Article  ADS  Google Scholar 

  22. H. Amakawa, N. Austern, Adiabatic-approximation survey of breakup effects in deuteron-induced reactions. Phys. Rev. C 27, 922 (1983)

    Article  ADS  Google Scholar 

  23. A. Laid, J.A. Tostevin, R.C. Johnson, Deuteron breakup effects in transfer reactions using a Weinberg state expansion method. Phys. Rev. C 48, 1307 (1993)

    Article  ADS  Google Scholar 

  24. N.B. Nguyen, F.M. Nunes, R.C. Johnson, Finite-range effects in (d,p) reactions. Phys. Rev. C 82, 014611 (2010)

    Article  ADS  Google Scholar 

  25. M. Kawai, M. Kamimura, K. Takesako, Chapter V. Coupled-channels variational method for nuclear breakup and rearrangement processes. Prog. Theor. Phys. Suppl. 89(Suppl 1), 118 (1986)

    Article  ADS  Google Scholar 

  26. T. Ohmura, B. Imanishi, M. Ichimura, M. Kawai, Study of deuteron stripping reaction by coupled channel theory. II properties of interaction kernel and method of numerical solution. Prog. Theor. Phys. 43, 347 (1970)

    Article  ADS  Google Scholar 

  27. I.J. Thompson, F.M. Nunes, in Nuclear reactions for astrophysics, Nuclear Reactions for Astrophysics, ed. by I.J. Thompson, F.M. Nunes (Cambridge University Press, Cambridge, 2009), p. 1

    Chapter  Google Scholar 

  28. L.D. Faddeev, Scattering theory for a three-particle system. Zh. Eksp. Teor. Fiz. 39, 1459 (1960)

    MathSciNet  Google Scholar 

  29. N. Austern, M. Yahiro, M. Kawai, Continuum discretized coupled-channels method as a truncation of a connected-kernel formulation of three-body problems. Phys. Rev. Lett. 63, 2649 (1989)

    Article  ADS  Google Scholar 

  30. N. Austern, M. Kawai, M. Yahiro, Three-body reaction theory in a model space. Phys. Rev. C 53, 314 (1996)

    Article  ADS  Google Scholar 

  31. A. Deltuva, A.M. Moro, E. Cravo, F.M. Nunes, A.C. Fonseca, Three-body description of direct nuclear reactions: comparison with the continuum discretized coupled channels method. Phys. Rev. C 76, 064602 (2007)

    Article  ADS  Google Scholar 

  32. A. Deltuva, Spin observables in three-body direct nuclear reactions. Nucl. Phys. A 821, 72 (2009)

    Article  ADS  Google Scholar 

  33. A. Deltuva, Deuteron stripping and pickup involving the halo nuclei 11Be and 15C. Phys. Rev. C 79, 054603 (2009)

    Article  ADS  Google Scholar 

  34. A. Deltuva, Three-body direct nuclear reactions: nonlocal optical potential. Phys. Rev. C 79, 021602 (2009)

    Article  ADS  Google Scholar 

  35. N.J. Upadhyay, A. Deltuva, F.M. Nunes, Testing the continuum-discretized coupled channels method for deuteron-induced reactions. Phys. Rev. C 85, 054621 (2012)

    Article  ADS  Google Scholar 

  36. W.R. Coker, Gamow-state analysis of 54Fe(d,n) to proton resonances in 55Co. Phys. Rev. C 9, 784 (1974)

    Article  ADS  Google Scholar 

  37. R. Huby, J.R. Mines, Distorted-wave born approximation for stripping to virtual levels. Rev. Mod. Phys. 37, 406 (1965)

    Article  ADS  Google Scholar 

  38. C.M. Vincent, H.T. Fortune, New method for distorted-wave analysis of stripping to unbound states. Phys. Rev. C 2, 782 (1970)

    Article  ADS  Google Scholar 

  39. H.B. Jeppesen, A.M. Moro, U.C. Bergmann, M.J.G. Borge, J. Cederkall, L.M. Fraile, H.O.U. Fynbo, J. Gomez-Camacho, H.T. Johansson, B. Jonson, M. Meister, T. Nilsson, G. Nyman, M. Pantea, K. Riisager, A. Richter, G. Schrieder, T. Sieber, O. Tengblad, E. Tengborn, M. Turrion, F. Wenander, Study of 10Li via the 9Li(2H, p) reaction at REX-ISOLDE. Phys. Lett. B 642, 449 (2006)

    Article  ADS  Google Scholar 

  40. I.J. Thompson, Computer code fresco. Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  41. A.M. Moro, R. Crespo, F. Nunes, I.J. Thompson, 8B breakup in elastic and transfer reactions. Phys. Rev. C 66, 024612 (2002)

    Article  ADS  Google Scholar 

  42. A.M. Moro, R. Crespo, F.M. Nunes, I.J. Thompson, Breakup and core coupling in 14N(7Be,8B)13C. Phys. Rev. C 67, 047602 (2003)

    Article  ADS  Google Scholar 

  43. K. Ogata, M. Yahiro, Y. Iseri, M. Kamimura, Determination of S 17 from the 7Be(d,n)8B reaction. Phys. Rev. C 67, 011602 (2003)

    Article  ADS  Google Scholar 

  44. B. Zwieglinski, W. Benenson, R.G.H. Robertson, W.R. Coker, Study of the 10Be(d,p)11Be reaction at 25 MeV. Nucl. Phys. A 315, 124 (1979)

    Article  ADS  Google Scholar 

  45. S. Fortier, S. Pita, J.S. Winfield, W.N. Catford, N.A. Orr, J.V. de Wiele, Y. Blumenfeld, R. Chapman, S.P.G. Chappell, N.M. Clarke, N. Curtis, M. Freer, S. Galès, K.L. Jones, H. Langevin-Joliot, H. Laurent, I. Lhenry, J.M. Maison, P. Roussel-Chomaz, M. Shawcross, M. Smith, K. Spohr, T. Suomijarvi, A. de Vismes, Core excitation in 11Be(gs) via the p (11Be, 10Be) d reaction. Phys. Lett. B 461, 22 (1999)

    Article  ADS  Google Scholar 

  46. A.M. Moro, F.M. Nunes, Transfer to the continuum and breakup reactions. Nucl. Phys. A 767, 138 (2006)

    Article  ADS  Google Scholar 

  47. A.M. Moro, F.M. Nunes, R.C. Johnson, Theory of (d, p) and (p, d) reactions including breakup: comparison of methods. Phys. Rev. C 80, 064606 (2009)

    Article  ADS  Google Scholar 

  48. J.S. Winfield, S. Fortier, W.N. Catford, S. Pita, N.A. Orr, J.V. de Wiele, Y. Blumenfeld, R. Chapman, S.P.G. Chappell, N.M. Clarke, N. Curtis, M. Freer, S. Galès, H. Langevin-Joliot, H. Laurent, I. Lhenry, J.M. Maison, P. Roussel-Chomaz, M. Shawcross, K. Spohr, T. Suomij, Single-neutron transfer from 11Begs via the (p,d) reaction with a radioactive beam. Nucl. Phys. A 683, 48 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Spanish national projects FPA2009-08848 and FPA2009-07653 and by the Consolider Ingenio 2010 Program CPAN (CSD2007-00042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Gómez Camacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gómez Camacho, J., Moro, A.M. (2014). A Pedestrian Approach to the Theory of Transfer Reactions: Application to Weakly-Bound and Unbound Exotic Nuclei. In: Scheidenberger, C., Pfützner, M. (eds) The Euroschool on Exotic Beams, Vol. IV. Lecture Notes in Physics, vol 879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45141-6_2

Download citation

Publish with us

Policies and ethics