Skip to main content

Theoretical Studies of Low-Energy Nuclear Reactions

  • Living reference work entry
  • First Online:
Handbook of Nuclear Physics
  • 95 Accesses

Abstract

We present a brief overview of scattering models at low energies. We first discuss the simple potential model, where the structure of the colliding nuclei is neglected. We develop in more detail the phase-shift method and discuss the choice of the optical potentials. The R-matrix theory is presented as an efficient tool to solve scattering problems, in particular for multichannel systems. We present a short description of the continuum discretized coupled channel (CDCC) theory, where breakup channels in the projectile and/or in the target are taken into account. Finally, we discuss transfer reactions and introduce the distorted wave Born approximation (DWBA).

Directeur de Recherches FNRS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, London, 1972)

    MATH  Google Scholar 

  • M.A.G. Alvarez, L.C. Chamon, M.S. Hussein, D. Pereira, L.R. Gasques, E.S. Rossi, C.P. Silva, A parameter-free optical potential for the heavy-ion elastic scattering process. Nucl. Phys. A 723(1), 93–103 (2003)

    Article  ADS  Google Scholar 

  • H.F. Arellano, G. Blanchon, Exact scattering waves off nonlocal potentials under coulomb interaction within schrödinger’s integro-differential equation. Phys. Lett. B 789, 256–261 (2019)

    Article  ADS  MATH  Google Scholar 

  • R.J. Ascuitto, N.K. Glendenning, Inelastic processes in particle transfer reactions. Phys. Rev. 181, 1396–1403 (1969)

    Article  ADS  Google Scholar 

  • M. Assunção, P. Descouvemont, Role of the hoyle state in 12c+12c fusion. Phys. Lett. B 723, 355 (2013)

    Article  ADS  MATH  Google Scholar 

  • N. Austern, Finite-range integration procedure for stripping with cdcc wavefunctions. Nucl. Phys. A 505(1), 1–6 (1989)

    Article  ADS  Google Scholar 

  • N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Continuum-discretized coupled-channels calculations for three-body models of deuteron-nucleus reactions. Phys. Rep. 154, 125 (1987)

    Article  ADS  Google Scholar 

  • M. Avrigeanu, A.C. Obreja, F.L. Roman, V. Avrigeanu, W. von Oertzen, Complementary optical-potential analysis of -particle elastic scattering and induced reactions at low energies. At. Data Nucl. Data Tables 95(4), 501–532 (2009)

    Article  ADS  Google Scholar 

  • K.L. Baluja, P.G. Burke, L.A. Morgan, R-matrix propagation program for solving coupled second-order differential equations. Comput. Phys. Commun. 27, 299 (1982)

    Article  ADS  Google Scholar 

  • K. Bartschat, E.T. Hudson, M.P. Scott, P.G. Burke, V.M. Burke, Electron – atom scattering at low and intermediate energies using a pseudo-state/r-matrix basis. J. Phys. B 29(1), 115 (1996)

    Google Scholar 

  • D. Baye, The lagrange-mesh method. Phys. Rep. 565, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Baye, P. Descouvemont, Nucl. Phys. A 407, 77 (1983)

    Article  ADS  Google Scholar 

  • D. Baye, P.H. Heenen, Nucl. Phys. A 233, 304 (1974)

    Article  ADS  Google Scholar 

  • D. Baye, P.H. Heenen, M. Libert-Heinemann, Nucl. Phys. A 291, 230 (1977)

    Article  ADS  Google Scholar 

  • F.D. Becchetti, G.W. Greenlees, Nucleon-nucleus optical-model parameters, a > 40, e < 50 mev. Phys. Rev. 182, 1190–1209 (1969)

    Google Scholar 

  • G. Bertsch, J. Borysowicz, H. Mcmanus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  • C.A. Bertulani, P. Danielewicz, Introduction to Nuclear Reactions (Institute of Physics Publishing, London, 2004)

    Google Scholar 

  • C. Bloch, Nucl. Phys. 4, 503 (1957)

    Article  Google Scholar 

  • P.G. Burke, R-Matrix Theory of Atomic Collisions. Application to Atomic, Molecular and Optical Processes. Springer Series on Atomic, Optical, and Plasma Physics, vol. 61 (Springer, Berlin/Heidelberg, 2011)

    Google Scholar 

  • L.F. Canto, M.S. Hussein, Scattering Theory of Molecules, Atoms and Nuclei (World Scientific Publishing, Singapore, 2013)

    Book  MATH  Google Scholar 

  • L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Recent developments in fusion and direct reactions with weakly bound nuclei. Phys. Rep. 596, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • L.C. Chamon, B.V. Carlson, L.R. Gasques, D. Pereira, C. De Conti, M.A.G. Alvarez, M.S. Hussein, M.A. Cândido Ribeiro, E.S. Rossi, C.P. Silva, Toward a global description of the nucleus-nucleus interaction. Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

  • L.C. Chamon, B.V. Carlson, L.R. Gasques, São paulo potential version 2 (spp2) and brazilian nuclear potential (BNP). Comput. Phys. Commun. 267, 108061 (2021)

    Article  MathSciNet  Google Scholar 

  • J.A. Christley, I.J. Thompson, Crcwfn: coupled real coulomb wavefunctions. Comput. Phys. Commun. 79, 143 (1994)

    Article  ADS  MATH  Google Scholar 

  • D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (The University of Chicago Press, Chicago, 1983)

    Google Scholar 

  • S.R. Cotanch, C.M. Vincent, Channel coupling and nonorthogonality in elastic and transfer processes. Phys. Rev. C 14, 1739 (1976)

    Article  ADS  Google Scholar 

  • P. Descouvemont, An r-matrix package for coupled-channel problems in nuclear physics. Comput. Phys. Commun. 200, 199 (2016)

    Article  ADS  Google Scholar 

  • P. Descouvemont, Low-energy 6He scattering in a microscopic model. Phys. Rev. C 93, 034616 (2016)

    Article  ADS  Google Scholar 

  • P. Descouvemont, Four-body extension of the continuum-discretized coupled-channels method. Phys. Rev. C 97, 064607 (2018)

    Article  ADS  Google Scholar 

  • P. Descouvemont, Low-energy 11Li + p and 11Li + d scattering in a multicluster model. Phys. Rev. C 101, 064611 (2020)

    Google Scholar 

  • P. Descouvemont, D. Baye, The r-matrix theory. Rep. Prog. Phys. 73, 036301 (2010)

    Article  ADS  Google Scholar 

  • P. Descouvemont, M. Dufour, Clusters in Nuclei, vol. 2. (Springer, 2012)

    Google Scholar 

  • P. Descouvemont, M.S. Hussein, Towards a microscopic description of reactions involving exotic nuclei. Phys. Rev. Lett. 111, 082701 (2013)

    Article  ADS  Google Scholar 

  • P. Descouvemont, M. Vincke, Phys. Rev. A 42, 3835 (1990)

    Article  ADS  Google Scholar 

  • P. Descouvemont, E.M. Tursunov, D. Baye, Nucl. Phys. A 765, 370 (2006)

    Article  ADS  Google Scholar 

  • P. Descouvemont, L.F. Canto, M.S. Hussein, Coulomb and nuclear effects in breakup and reaction cross sections. Phys. Rev. C 95, 014604 (2017)

    Article  ADS  Google Scholar 

  • W.H. Dickhoff, R.J. Charity, Recent developments for the optical model of nuclei. Prog. Part. Nucl. Phys. 105, 252–299 (2019)

    Article  ADS  Google Scholar 

  • J. Dohet-Eraly, P. Descouvemont, Exchange effects in nucleus-nucleus reactions. Phys. Rev. C 103, 034619 (2021)

    Article  ADS  Google Scholar 

  • T. Druet, P. Descouvemont, Continuum effects in the scattering of exotic nuclei. Eur. Phys. J. A 48, 147 (2012)

    Article  ADS  Google Scholar 

  • T. Druet, D. Baye, P. Descouvemont, J.-M. Sparenberg, Cdcc calculations with the lagrange-mesh technique. Nucl. Phys. A 845, 88 (2010)

    Article  ADS  MATH  Google Scholar 

  • H Feshbach, The optical model and its justification. Ann. Rev. Nucl. Sci. 8(1), 49–104 (1958)

    Article  ADS  Google Scholar 

  • R.J. Glauber, High Energy Collision Theory. Lectures in Theoretical Physics, vol. 1 (Interscience, New York, 1959)

    Google Scholar 

  • N.K. Glendenning, Direct Nuclear Reactions (World Scientific, Singapore, 2004)

    Book  MATH  Google Scholar 

  • L.J.B. Goldfarb, Inferences concerning the real part of the heavy-ion optical potential through folding techniques. Nucl. Phys. A 301(3), 497–510 (1978)

    Article  ADS  Google Scholar 

  • L.J.B. Goldfarb, K. Takeuchi, Effects of non-orthogonality and virtual excitations in direct reactions (I). Nucl. Phys. A 181(2), 609–638 (1972)

    Article  ADS  Google Scholar 

  • L.J.B. Goldfarb, K. Takeuchi, Effects of non-orthogonality and virtual excitations in direct reactions (II). Nucl. Phys. A 218(2), 396–404 (1974)

    Article  ADS  Google Scholar 

  • K. Hagino, N. Rowley, A.T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123(1), 143–152 (1999)

    Article  ADS  MATH  Google Scholar 

  • Y. Han, Y. Shi, Q. Shen, Deuteron global optical model potential for energies up to 200 mev. Phys. Rev. C 74, 044615 (2006)

    Article  ADS  Google Scholar 

  • M. Hesse, J.M. Sparenberg, F. Van Raemdonck, D. Baye, Nucl. Phys. A 640, 37 (1998)

    Article  ADS  Google Scholar 

  • M. Hesse, J. Roland, D. Baye, Nucl. Phys. A 709, 184 (2002)

    Article  ADS  Google Scholar 

  • P.E. Hodgson, The nuclear optical model. Rep. Prog. Phys. 34(2), 765–819 (1971)

    Article  ADS  Google Scholar 

  • H. Horiuchi, Kernels of GCM, RGM and OCM and their calculation methods. Prog. Theor. Phys. Suppl. 62, 90 (1977)

    Article  ADS  Google Scholar 

  • C. Iliadis, Nuclear Physics of Stars (Wiley-VCH Verlag GmbH, Weinheim, 2007)

    Book  Google Scholar 

  • C. Joachain, Quantum Collision Theory (Elsevier Science, Amsterdam, 1983)

    Google Scholar 

  • J. Gómez Camacho, A.M. Moro, A Pedestrian approach to the theory of transfer reactions: application to weakly-bound and unbound exotic nuclei (Springer, Berlin/Heidelberg, 2014), pp. 39–66

    Google Scholar 

  • R.C. Johnson, Theory of the a(d,p)b reaction as a tool for nuclear structure studies. J. Phys. G 41(9), 094005 (2014)

    Google Scholar 

  • R.C. Johnson, P.C. Tandy, An approximate three-body theory of deuteron stripping. Nucl. Phys. A 235(1), 56–74 (1974)

    Article  ADS  Google Scholar 

  • D.T. Khoa, Exchange effects in nuclear rainbow scattering. Nucl. Phys. A 484(2), 376 (1988)

    Google Scholar 

  • D.T. Khoa, G.R. Satchler, Generalized folding model for elastic and inelastic nucleus-nucleus scattering using realistic density dependent nucleon-nucleon interaction. Nucl. Phys. A 668, 3 (2000)

    Article  ADS  Google Scholar 

  • D.T. Khoa, G.R. Satchler, W. von Oertzen, Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus-nucleus potentials. Phys. Rev. C 56, 954–969 (1997)

    Article  ADS  Google Scholar 

  • A.M. Kobos, B.A. Brown, P.E. Hodgson, G.R. Satchler, A. Budzanowski, Folding model analysis of alpha-particle elastic scattering with a semirealistic density-dependent effective interaction. Nucl. Phys. A 384, 65 (1982)

    Article  ADS  Google Scholar 

  • A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 kev to 200 mev. Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  • A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Lei, P. Descouvemont, Lagrange-mesh r-matrix method for inhomogeneous equations. Phys. Rev. C 102, 014608 (2020)

    Article  ADS  Google Scholar 

  • T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba, M. Yahiro, Continuum-discretized coupled-channels method for four-body nuclear breakup in he6 + c12 scattering. Phys. Rev. C 70, 061601 (2004)

    Google Scholar 

  • N. Michel, A simple and efficient numerical scheme to integrate non-local potentials. Eur. Phys. J. A 42(3), 523–527 (2009)

    Article  ADS  Google Scholar 

  • A.M. Moro, F.M. Nunes, R.C. Johnson, Theory of (d, p) and (p, d) reactions including breakup: comparison of methods. Phys. Rev. C 80, 064606 (2009)

    Google Scholar 

  • F.M. Nunes, I.J. Thompson, Multistep effects in sub-coulomb breakup. Phys. Rev. C 59, 2652 (1999)

    Article  ADS  Google Scholar 

  • T. Ohmura, B. Imanishi, M. Ichimura, M. Kawai, Study of deuteron stripping reaction by coupled channel theory. I: variational formulation and discussion on basic equations. Prog. Theor. Phys. 41(2), 391–418 (1969)

    Google Scholar 

  • N. Oulebsir, F. Hammache, P. Roussel, M.G. Pellegriti, L. Audouin, D. Beaumel, A. Bouda, P. Descouvemont, S. Fortier, L. Gaudefroy, J. Kiener, A. Lefebvre-Schuhl, V. Tatischeff, Indirect study of the 12c(α,γ)16o reaction via the 12c(7li, t)16o transfer reaction. Phys. Rev. C 85, 035804 (2012)

    Article  ADS  Google Scholar 

  • D.Y. Pang, P. Roussel-Chomaz, H. Savajols, R.L. Varner, R. Wolski, Global optical model potential for a = 3 projectiles. Phys. Rev. C 79, 024615 (2009)

    Google Scholar 

  • F. Perey, B. Buck, A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32, 353–380 (1962)

    Article  MATH  Google Scholar 

  • E.C. Pinilla, P. Descouvemont, Microscopic description of 7Li in 7Li + 12C and 7Li + 28Si elastic scattering at high energies. Phys. Rev. C 89, 054615 (2014)

    Article  ADS  Google Scholar 

  • S. Quaglioni, P. Navrátil, Ab initio many-body calculations of nucleon-nucleus scattering. Phys. Rev. C 79, 044606 (2009)

    Article  ADS  Google Scholar 

  • G.H. Rawitscher, Effect of deuteron breakup on elastic deuteron – nucleus scattering. Phys. Rev. C 9, 2210 (1974)

    Article  ADS  Google Scholar 

  • J. Raynal, in Computing as a Language of Physics, Trieste, 1971 (IAEA, Vienna, 1972), p. 281

    Google Scholar 

  • J. Raynal, Recurrence relations for distorted-wave born approximation coulomb excitation integrals and their use in coupled channel calculations. Phys. Rev. C 23, 2571 (1981)

    Article  ADS  Google Scholar 

  • M. Rhoades-Brown, M.H. Macfarlane, S.C. Pieper, Techniques for heavy-ion coupled-channels calculations. I. Long-range coulomb coupling. Phys. Rev. C 21, 2417 (1980)

    Google Scholar 

  • M. Rodríguez-Gallardo, J.M. Arias, J. Gómez-Camacho, R.C. Johnson, A.M. Moro, I.J. Thompson, J.A. Tostevin, Four-body continuum-discretized coupled-channels calculations using a transformed harmonic oscillator basis. Phys. Rev. C 77, 064609 (2008)

    Article  ADS  Google Scholar 

  • G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, New York, 1983)

    Google Scholar 

  • B.P. Schoenborn, A.C. Nunes, Neutron scattering. Annu. Rev. Biophys. Bioeng. 1(1), 529–552 (1972)

    Article  Google Scholar 

  • Shubhchintak, P. Descouvemont, Transfer reactions with the Lagrange-mesh method. Phys. Rev. C 100(3), 034611 (2019)

    Google Scholar 

  • I.H. Sloan, Note errors in the numerov and runge-kutta methods. J. Comput. Phys. 2(4), 414–416 (1968)

    Article  ADS  MATH  Google Scholar 

  • Y. Suzuki, R.G. Lovas, K. Yabana, K. Varga, Structure and Reactions of Light Exotic Nuclei (Taylor & Francis, London, 2003)

    Book  Google Scholar 

  • T. Tamura, Phys. Rep. 14C, 59 (1974)

    Article  ADS  Google Scholar 

  • I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215 (2013)

    Article  ADS  Google Scholar 

  • I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  • I.J. Thompson, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge/New York, 2010)

    Google Scholar 

  • I.J. Thompson, F.M. Nunes, Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  • A.E. Thorlacius, E.D. Cooper, An algorithm for integrating the schrödinger equation. J. Comput. Phys. 72(1), 70–77 (1987)

    Article  ADS  MATH  Google Scholar 

  • N.K. Timofeyuk, R.C. Johnson, Nonlocality in deuteron stripping reactions. Phys. Rev. Lett. 110, 112501 (2013)

    Article  ADS  Google Scholar 

  • R.L. Varner, W.J. Thompson, T.L. McAbee, E.J. Ludwig, T.B. Clegg, A global nucleon optical model potential. Phys. Rep. 201(2), 57 (1991)

    Google Scholar 

  • M. Viviani, A. Deltuva, R. Lazauskas, A.C. Fonseca, A. Kievsky, L.E. Marcucci, Benchmark calculation of p-3H and n-3He scattering. Phys. Rev. C 95, 034003 (2017)

    Article  ADS  Google Scholar 

  • K. Wimmer, Nucleon transfer reactions with radioactive beams. J. Phys. G 45(3), 033002 (2018)

    Google Scholar 

  • M. Yahiro, T. Matsumoto, K. Minomo, T. Sumi, S. Watanabe, Recent development of cdcc. Prog. Theor. Phys. Suppl. 196, 87 (2012)

    Article  ADS  Google Scholar 

  • J.Z.H. Zhang, S.I. Chu, W.H. Miller, Quantum scattering via the s-matrix version of the kohn variational principle. J. Chem. Phys. 88(10), 6233–6239 (1988)

    Article  ADS  Google Scholar 

  • J. Zhao, R.M. Corless, Compact finite difference method for integro-differential equations. Appl. Math. Comput. 177(1), 271–288 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Jérémy Dohet-Eraly and to Kouichi Hagino for their careful reading of the manuscript. This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant Numbers 4.45.10.08 and J.0049.19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Descouvemont .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Descouvemont, P. (2022). Theoretical Studies of Low-Energy Nuclear Reactions. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-15-8818-1_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8818-1_4-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8818-1

  • Online ISBN: 978-981-15-8818-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics