Skip to main content
Log in

Structure of \(^{48,49,50}\)Ca in a phenomenological shell model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We discuss a phenomenological shell model analysis of the structure of \(^{48,49,50}\)Ca. Based on simple arguments, we propose wavefunctions fit to the available data on spectroscopic factors derived from direct one neutron addition and removal reactions. These empirical wavefunctions are then used to calculate properties of low-lying states in \(^{49,50,51}\)Ca, which are consistent with available experimental data. Our analysis appears to capture the main ingredients at play in the low-lying properties of these nuclei and emphasize the prominent role of pairing correlations. We also present predictions that could motivate further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the results are shown in the figures or explicitly given in the text and can be reproduced from the relevant equations. Experimental data used in our analysis are available from the references.]

References

  1. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 65, 061301(R) (2002)

    Article  ADS  Google Scholar 

  2. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Eur. Phys. J. A 25, 499 (2005)

    Article  Google Scholar 

  3. D. Steppenbeck et al., Nature 502, 207 (2013)

    Article  ADS  Google Scholar 

  4. F. Wienholtz et al., Nature (London) 498, 346 (2013)

    Article  ADS  Google Scholar 

  5. J. Holt et al., J. Phys. G: Nucl. Part. Phys. 39, 085111 (2012)

    Article  ADS  Google Scholar 

  6. J. Holt et al., Phys. Rev. C 90, 024312 (2014)

    Article  ADS  Google Scholar 

  7. G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012)

    Article  ADS  Google Scholar 

  8. A.T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012)

    Article  ADS  Google Scholar 

  9. K. Hebeler, J.D. Holt, J. Menendez, A. Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

    Article  ADS  Google Scholar 

  10. J.D. Holt, J. Menendez, A. Schwenk, J. Phys. G 40, 075105 (2013)

    Article  ADS  Google Scholar 

  11. V. Soma, A. Cipollone, C. Barbieri, P. Navratil, T. Duguet, Phys. Rev. C 89, 061301(R) (2014)

    Article  ADS  Google Scholar 

  12. S. Binder, J. Langhammer, A. Calci, R. Roth, Phys. Lett. B 736, 119 (2014)

    Article  ADS  Google Scholar 

  13. H. Hergert et al., Phys. Rev. C 90, 041302(R) (2014)

    Article  ADS  Google Scholar 

  14. P. Martin et al., Nucl. Phys. A 185, 465 (1972)

    Article  ADS  Google Scholar 

  15. M.E. Williams-Norton, R. Abegg, Nucl. Phys. A 291, 429 (1977)

    Article  ADS  Google Scholar 

  16. Y. Uozumi, O. Iwamoto, S. Widodo, A. Nohtomi, T. Sakae, M. Matoba, M. Nakano, T. Maki, N. Koori, Nucl. Phys. A 576, 123 (1994)

    Article  ADS  Google Scholar 

  17. H.L. Crawford, A.O. Macchiavelli, P. Fallon, M. Albers, V.M. Bader, D. Bazin et al., Phys. Rev. C 95, 064317 (2017)

    Article  ADS  Google Scholar 

  18. R.F. Garcia Ruiz et al., Phys. Rev. C91, 041304(R) (2015)

    ADS  Google Scholar 

  19. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A. Zuker, Rev. Mod. Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  20. L.A. Riley, M.L. Agiorgousis, T.R. Baugher, D. Bazin, M. Bowry, P.D. Cottle et al., Phys. Rev. C 90, 011305(R) (2014)

    Article  ADS  Google Scholar 

  21. J.J. Valiente-Dobon, D. Mengoni, A. Gadea, E. Farnea, S.M. Lenzi, S. Lunardi et al., Phys. Rev. Lett. 102, 242502 (2009)

    Article  ADS  Google Scholar 

  22. B.F. Bayman, N. Hintz, Phys. Rev. 172, 1113 (1968)

    Article  ADS  Google Scholar 

  23. A.M. Lane, Frontiers in Nuclear Physics Nuclear Theory. (W. A. Benjamin Inc, New York, 1964)

    Google Scholar 

  24. M. Tanaka, M. Takechi, A. Homma, M. Fukuda, D. Nishimura, T. Suzuki et al., Phys. Rev. Lett. 124, 102501 (2020)

    Article  ADS  Google Scholar 

  25. A. Volya, Nucracker: A library of web-based programs for nuclear physics and beyond, https://nucracker.volya.net/

  26. R.F. Garcia Ruiz et al., Nat. Phys. 12, 594 (2016)

    Article  Google Scholar 

  27. https://www.nndc.bnl.gov/ensdf/

  28. C. Williams, J.D. Knight, W.T. Leland, Phys. Lett. 22, 162 (1966)

    Article  ADS  Google Scholar 

  29. J.H. Bjerregaard, O. Hansen, O. Nathan, R. Chapman, S. Hinds, R. Middleton, Nucl. Phys. A 103, 33 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231. We would like to thank Prof. Alfredo Poves for many discussions on the structure of the Ca isotopes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Macchiavelli.

Additional information

Communicated by K. Sieja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macchiavelli, A.O., Crawford, H.L., Clark, R.M. et al. Structure of \(^{48,49,50}\)Ca in a phenomenological shell model. Eur. Phys. J. A 58, 144 (2022). https://doi.org/10.1140/epja/s10050-022-00763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00763-1

Navigation