Skip to main content

Nuclear Shell Model and Level Density

  • Conference paper
  • First Online:
Compound-Nuclear Reactions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 254))

  • 477 Accesses

Abstract

We discuss the shell-model description of the nuclear level density and underlying physics. The reliable results can be derived avoiding the full diagonalization of the huge Hamiltonian matrices. Taking into account all available interactions (not only the most collective ones) is necessary to explain the smooth energy behavior of the level density. In particular, the popular “constant temperature model” gives a good description of the results but turns out to be unrelated to the suggested pairing phase transition reflecting the fast chaotization of many-body dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Ericson, Adv. Phys. 9, 425 (1960)

    Article  ADS  Google Scholar 

  2. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  3. T. von Egidy, D. Bucurescu, J. Phys. Conf. Ser. 338, 012028 (2012)

    Article  Google Scholar 

  4. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  5. S. Hilaire, M. Girod, S. Goriely, A.J. Koning. Phys. Rev. C 86, 064317 (2012)

    Article  ADS  Google Scholar 

  6. Y. Alhassid, G.F. Bertsch, S. Liu, H. Nakada, Phys. Rev. Lett. 84, 4313 (2000)

    Article  ADS  Google Scholar 

  7. Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 99, 162504 (2007)

    Article  ADS  Google Scholar 

  8. Y. Alhassid, A. Mukherjee, H. Nakada, C. Ozen, J. Phys. Conf. Ser. 403, 012012 (2012)

    Article  Google Scholar 

  9. V. Zelevinsky, M. Horoi, Prog. Part. Nucl. Phys. 105, 180 (2019)

    Article  ADS  Google Scholar 

  10. I.C. Percival, J. Phys. B 6, L229 (1973)

    Article  ADS  Google Scholar 

  11. V. Zelevinsky, B.A. Brown, N. Frazier, M. Horoi, Phys. Rep. 276, 85 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. V. Zelevinsky, Annu. Rev. Nucl. Part. Phys. 46, 237 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. V.V. Flambaum, F.M. Izrailev, Phys. Rev. E 56, 5144 (1997)

    Article  ADS  Google Scholar 

  14. J.B. French, K.F. Ratcliff, Phys. Rev. C 3, 94 (1971)

    Article  ADS  Google Scholar 

  15. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Rev. Mod. Phys. 55, 385 (1981)

    Article  ADS  Google Scholar 

  16. V.K.B. Kota, R.U. Haq (eds.), Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010)

    Google Scholar 

  17. S.S.M. Wong, Nuclear Statistical Spectroscopy (Oxford, University Press, 1986)

    Google Scholar 

  18. R.A. Sen’kov, M. Horoi, V.G. Zelevinsky, Comput. Phys. Commun. 184, 215 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. B.A Brown, W.E. Ormand, LLNL-PROC-758995 (2018)

    Google Scholar 

  20. R. Sen’kov, V. Zelevinsky, Phys. Rev. C 93, 064304 (2016)

    Article  ADS  Google Scholar 

  21. S. Karampagia, R.A. Sen’kov, V. Zelevinsky, At. Data Nucl. Data Tables 120, 1 (2018)

    Article  Google Scholar 

  22. L.G. Moretto, A.C. Larsen, F. Giacoppo, M. Guttormsen, S. Siem, A.V. Voinov, J. Phys. Conf. Ser. 580, 012048 (2015). arXiv: 1406.2642

    Article  Google Scholar 

  23. V. Zelevinsky, S. Karampagia, A. Berlaga, Phys. Lett. B 783, 428 (2018)

    Article  ADS  Google Scholar 

  24. S. Karampagia, A. Renzaglia, V. Zelevinsky, Nucl. Phys. A 962, 46 (2017)

    Article  ADS  Google Scholar 

  25. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979)

    Google Scholar 

  26. M. Horoi, V. Zelevinsky, Phys. Rev. C 81, 034306 (2010)

    Article  ADS  Google Scholar 

  27. S. Karampagia, V. Zelevinsky, Phys. Rev. C 94 , 014321 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The whole development of the method was done in collaboration with M. Horoi and R.A. Sen’kov; discussions with N. Auerbach and B.A. Brown are acknowledged. We thank students A. Renzaglia and A. Berlaga for participation in the research. The work on level density was supported by NSF grants PHY-1068217 and PHY-1404442, and the grant from the Binational Science Foundation US-Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zelevinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zelevinsky, V., Karampagia, S. (2021). Nuclear Shell Model and Level Density. In: Escher, J., et al. Compound-Nuclear Reactions . Springer Proceedings in Physics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-030-58082-7_14

Download citation

Publish with us

Policies and ethics