Skip to main content
Log in

Strange particle production in jets and underlying events in pp collisions at \(\sqrt{s} = 7\) TeV with PYTHIA8 generator

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Strange hadron production in pp collisions at \(\sqrt{s} = 7\) TeV is studied in jets and underlying events using the PYTHIA8 event generator. Matching strange hadrons to the jet area and the underlying event area is expected to help us disentangle the strange particles produced in hard and soft processes. The yield and the relative production of strange hadrons dependent on the event multiplicity are investigated with the color reconnection and color rope mechanisms implemented in the PYTHIA8 framework. It is found that the inclusive strange hadron productions can be reasonably described by the color reconnection and color rope combined effects. A significant multiplicity dependent enhancement of the strange baryon production in the jet area is observed induced by the modified string fragmentation mechanisms, indicating the strange baryon enhancement persists in both the hard and the soft process. Multi-strange baryons are found to be more collimated with the jet axis than other strange hadrons in the string fragmentation picture with the jet shape analysis technique. Future experimental examination of these jet related strange hadron productions will provide more insight to the origin of strangeness enhancement in small systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical paper and this manuscript has no associated data.]

References

  1. J. Adams et al., Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

    Article  ADS  Google Scholar 

  2. K. Adcox et al., Nucl. Phys. A 757, 184 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086

    Article  ADS  Google Scholar 

  3. I. Arsene et al., Nucl. Phys. A 757, 1 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130

    Article  ADS  Google Scholar 

  4. B.B. Back et al., Nucl. Phys. A 757, 28 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084

    Article  ADS  Google Scholar 

  5. J. Schukraft, Phil. Trans. Roy. Soc. Lond. A 370, 917 (2012). https://doi.org/10.1098/rsta.2011.0469

    Article  ADS  Google Scholar 

  6. H. Satz, Rep. Prog. Phys. 63, 1511 (2000). https://doi.org/10.1088/0034-4885/63/9/203

    Article  ADS  Google Scholar 

  7. E.V. Shuryak, Phys. Rep. 115, 151 (1984). https://doi.org/10.1016/0370-1573(84)90037-1

    Article  ADS  Google Scholar 

  8. B.V. Jacak, B. Muller, Science 337, 310 (2012). https://doi.org/10.1126/science.1215901

    Article  ADS  Google Scholar 

  9. J. Cleymans, R.V. Gavai, E. Suhonen, Phys. Rep. 130, 217 (1986). https://doi.org/10.1016/0370-1573(86)90169-9

    Article  ADS  Google Scholar 

  10. S.A. Bass, M. Gyulassy, H. Stoecker, W. Greiner, J. Phys. G 25, R1 (1999). https://doi.org/10.1088/0954-3899/25/3/013

    Article  ADS  Google Scholar 

  11. P. Braun-Munzinger, J. Stachel, Nature 448, 302 (2007). https://doi.org/10.1038/nature06080

    Article  ADS  Google Scholar 

  12. B. Abelev et al., Eur. Phys. J. C 72, 2124 (2012). https://doi.org/10.1140/epjc/s10052-012-2124-9

    Article  ADS  Google Scholar 

  13. S. Chatrchyan et al., Eur. Phys. J. C 74(6), 2847 (2014). https://doi.org/10.1140/epjc/s10052-014-2847-x

    Article  ADS  Google Scholar 

  14. V. Khachatryan et al., JHEP 09, 091 (2010). https://doi.org/10.1007/JHEP09(2010)091

    Article  ADS  Google Scholar 

  15. S. Chatrchyan et al., Phys. Lett. B 718, 795 (2013). https://doi.org/10.1016/j.physletb.2012.11.025

    Article  ADS  Google Scholar 

  16. B. Abelev et al., Phys. Lett. B 719, 29 (2013). https://doi.org/10.1016/j.physletb.2013.01.012

    Article  ADS  Google Scholar 

  17. G. Aad et al., Phys. Rev. Lett. 110(18), 182302 (2013). https://doi.org/10.1103/PhysRevLett.110.182302

    Article  ADS  Google Scholar 

  18. G. Aad et al., Phys. Lett. B 725, 60 (2013). https://doi.org/10.1016/j.physletb.2013.06.057

    Article  ADS  Google Scholar 

  19. S. Chatrchyan et al., Phys. Lett. B 724, 213 (2013). https://doi.org/10.1016/j.physletb.2013.06.028

    Article  ADS  Google Scholar 

  20. A. Adare et al., Phys. Rev. C 88(2), 024906 (2013). https://doi.org/10.1103/PhysRevC.88.024906

    Article  ADS  Google Scholar 

  21. J. Adams et al., Phys. Lett. B 637, 161 (2006). https://doi.org/10.1016/j.physletb.2006.04.032

    Article  ADS  Google Scholar 

  22. G. Aad et al., Phys. Rev. Lett. 116(17), 172301 (2016). https://doi.org/10.1103/PhysRevLett.116.172301

    Article  ADS  Google Scholar 

  23. B.B. Abelev et al., Phys. Lett. B 726, 164 (2013). https://doi.org/10.1016/j.physletb.2013.08.024

    Article  ADS  Google Scholar 

  24. V. Khachatryan et al., Phys. Rev. Lett. 115(1), 012301 (2015). https://doi.org/10.1103/PhysRevLett.115.012301

    Article  ADS  Google Scholar 

  25. S. Acharya et al., Phys. Rev. Lett. 123(14), 142301 (2019). https://doi.org/10.1103/PhysRevLett.123.142301

    Article  ADS  Google Scholar 

  26. B.B. Abelev et al., Phys. Rev. C 91, 024609 (2015). https://doi.org/10.1103/PhysRevC.91.024609

    Article  ADS  Google Scholar 

  27. J. Adam et al., Phys. Lett. B 758, 389 (2016). https://doi.org/10.1016/j.physletb.2016.05.027

    Article  ADS  Google Scholar 

  28. S. Acharya et al., Phys. Rev. C 99(2), 024906 (2019). https://doi.org/10.1103/PhysRevC.99.024906

    Article  ADS  Google Scholar 

  29. J. Adam et al., Nat. Phys. 13, 535 (2017). https://doi.org/10.1038/nphys4111

    Article  Google Scholar 

  30. R. Nayak, S. Pal, S. Dash, Phys. Rev. D 100(7), 074023 (2019). https://doi.org/10.1103/PhysRevD.100.074023

  31. C. Bierlich, G. Gustafson, L. Lönnblad, EPJ Web Conf. 171 (2018) 14003 (2016)

  32. A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, G. Paić, Phys. Rev. Lett. 111(4), 042001 (2013). https://doi.org/10.1103/PhysRevLett.111.042001

    Article  ADS  Google Scholar 

  33. T. Åkesson et al., Z. Phys. C 34, 163 (1987). https://doi.org/10.1007/BF01566757

    Article  ADS  Google Scholar 

  34. J. Alitti et al., Phys. Lett. B 268, 145 (1991). https://doi.org/10.1016/0370-2693(91)90937-L

    Article  ADS  Google Scholar 

  35. F. Abe et al., Phys. Rev. D 56, 3811 (1997). https://doi.org/10.1103/PhysRevD.56.3811

    Article  ADS  Google Scholar 

  36. J.R. Christiansen, P.Z. Skands, JHEP 08, 003 (2015). https://doi.org/10.1007/JHEP08(2015)003

    Article  ADS  Google Scholar 

  37. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015). https://doi.org/10.1016/j.cpc.2015.01.024

    Article  ADS  Google Scholar 

  38. T.S. Biro, H.B. Nielsen, J. Knoll, Nucl. Phys. B 245, 449 (1984). https://doi.org/10.1016/0550-3213(84)90441-3

    Article  ADS  Google Scholar 

  39. A. Bialas, W. Czyz, Phys. Rev. D 31, 198 (1985). https://doi.org/10.1103/PhysRevD.31.198

    Article  ADS  Google Scholar 

  40. C. Bierlich, J.R. Christiansen, Phys. Rev. D 92(9), 094010 (2015). https://doi.org/10.1103/PhysRevD.92.094010

    Article  ADS  Google Scholar 

  41. C. Flensburg, G. Gustafson, L. Lonnblad, JHEP 08, 103 (2011). https://doi.org/10.1007/JHEP08(2011)103

    Article  ADS  Google Scholar 

  42. C. Bierlich, G. Gustafson, L. Lönnblad, A. Tarasov, JHEP 03, 148 (2015). https://doi.org/10.1007/JHEP03(2015)148

    Article  Google Scholar 

  43. L. Zheng, D.M. Zhou, Z.B. Yin, Y.L. Yan, G. Chen, X. Cai, B.H. Sa, Phys. Rev. C 98(3), 034917 (2018). https://doi.org/10.1103/PhysRevC.98.034917

    Article  ADS  Google Scholar 

  44. S. Acharya et al., Phys. Lett. B (2022). https://doi.org/10.1016/j.physletb.2022.136984

    Article  Google Scholar 

  45. M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008). https://doi.org/10.1088/1126-6708/2008/04/063

    Article  ADS  Google Scholar 

  46. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). https://doi.org/10.1140/epjc/s10052-012-1896-2

    Article  ADS  Google Scholar 

  47. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). https://doi.org/10.1016/j.physletb.2006.08.037

    Article  ADS  Google Scholar 

  48. S. Acharya et al., Phys. Rev. D 99(1), 012016 (2019). https://doi.org/10.1103/PhysRevD.99.012016

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Acharya et al., Phys. Lett. B 783, 95 (2018). https://doi.org/10.1016/j.physletb.2018.05.059

    Article  ADS  Google Scholar 

  50. K. Aamodt et al., Eur. Phys. J. C 68, 345 (2010). https://doi.org/10.1140/epjc/s10052-010-1350-2

    Article  ADS  Google Scholar 

  51. S. Acharya et al., Phys. Lett. B 807, 135501 (2020). https://doi.org/10.1016/j.physletb.2020.135501

    Article  Google Scholar 

  52. A. Goswami, R. Nayak, B.K. Nandi, S. Dash, Eur. Phys. J. C 81(11), 988 (2021). https://doi.org/10.1140/epjc/s10052-021-09709-1

    Article  ADS  Google Scholar 

  53. R. Acconcia, D.D. Chinellato, R. Derradi de Souza, J. Takahashi, G. Torrieri, C. Markert, Phys. Rev. D 97(3), 036010 (2018). https://doi.org/10.1103/PhysRevD.97.036010

    Article  ADS  Google Scholar 

  54. S. Acharya et al., JHEP 04, 192 (2020). https://doi.org/10.1007/JHEP04(2020)192

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2016YFE0100900), the National Natural Science Foundation of China (11875143, 11905188 and 12061141008) and the Innovation Fund of Key Laboratory of Quark and Lepton Physics LPL2020P01 (LZ). At the end we would like to thank Christian Bierlich for providing us the input parameters for the color reconnection and the color rope model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zheng.

Additional information

Communicated by Tamas Biro.

Appendix

Appendix

To clarify the reliability of the treatment to the UE contribution in this work, we provide in the Appendix additional details for the jet number distributions in different multiplicity bins, which explores the multi-jet impacts on our analysis.

Fig. 9
figure 9

Jet number distribution varying with the event multiplicity in each minimum bias events (top), jet number with the event multiplicity distribution in events with at least one high \(p_\mathrm {T} \) jet (middle), and jet number probability distribution in the most high multiplicity event class (bottom) compared to that in inclusive events

The top panel of Fig. 9 presents the yields of \(p_\mathrm{T,~jet}^\mathrm{ch}> 10\) GeV/\(c\) jets dependent on the event multiplicity from the default PYTHIA8 simulations. The jet yields grow rapidly with the event multiplicity, while the per-event high \(p_\mathrm {T} \) jet number is around 0.02 even in the highest multiplicity bin. We also explore the multiplicity dependence of jet yields normalized to the events with at least one high \(p_\mathrm {T} \) jet in the middle panel of Fig. 9. It is shown that the produced jet number in each jet event is very close to one and almost independent of the event activity. The jet number probability distribution in high multiplicity jet events is found to be similar to that in the minbias jet events as shown in the bottom panel of Fig. 9. Most of the events contain only one jet and the probability to have more than one back-to-back di-jet in an event is very low. In that sense, the contamination to UE from jet particles is negligible within the accessible multiplicity range which can be covered by the current experiments in pp collisions at the LHC energy. Like what has been done in many jet related experimental studies [44, 54], the UE contribution can be safely estimated simply by taking the perpendicular region to the leading jet direction, which is denoted as the perpendicular cone method in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, P., Yin, Z. & Zheng, L. Strange particle production in jets and underlying events in pp collisions at \(\sqrt{s} = 7\) TeV with PYTHIA8 generator. Eur. Phys. J. A 58, 53 (2022). https://doi.org/10.1140/epja/s10050-022-00709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00709-7

Navigation