Skip to main content
Log in

Asymptotic normalization coefficient for \({{}^{12}\mathrm{C}}+p\rightarrow {{}^{13}\mathrm{N}}\) from the \({}^{12}{\mathrm{C}}({}^{10}\mathrm{B},{}^{9}{\mathrm{Be}}){}^{13}\mathrm{N}\) reaction and the \({}^{12}\mathrm{C}(p,\gamma ){}^{13}\mathrm{N}\) astrophysical S factor

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

This work is aimed at clarifying the contribution of the proton direct radiative capture to the \({}^{12}\mathrm{C}(p,\gamma ){}^{13}\mathrm{N}\) reaction by specifying the value of the asymptotic normalization coefficient (ANC) for \({}^{12}\mathrm{C}+p\rightarrow {}^{13}\mathrm{N}_\mathrm{g.s.}\). In order to do this, the differential cross section of the proton transfer in the \({}^{12}\mathrm{C}({}^{10}\mathrm{B},{}^9\mathrm{Be})^{13}\mathrm{N}\) reaction at an energy of 41.3 MeV has been measured and analyzed through the modified distorted wave Born approximation (MDWBA) method taking into account the reaction channel coupling and \({}^{3}{\mathrm{He}}\) cluster transfer contributions. The value of the ANC was derived to be 1.63±0.13 fm\(^{-1/2}\), which was used in estimating the astrophysical S(E) factor and the reaction rate of the proton radiative capture by the \({}^{12}{\mathrm{C}}\) nucleus at energies of astrophysical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with the manuscript. All data generated during this study are contained in this published article.]

References

  1. W.A. Fowler, Rev. Mod. Phys. 56, 149 (1984)

    Article  ADS  Google Scholar 

  2. C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos, (University of Chicago Press, 1988) 580

  3. The Borexino Collaboration, Nature 587, 577 (2020)

  4. R. Gallino et al., Astro. Phys. J. 494, 388 (1998)

  5. N. Burtebaev, S.B. Igamov, R.J. Peterson, R. Yarmukhamedov, D.M. Zazulin, Phys. Rev. C 78, 035802 (2008)

    Article  ADS  Google Scholar 

  6. D. M. Zazulin, N.Burtebayev,R. J.Peterson, S.Artemov et al., Izv NAS RK, ser.fiz-mat. 4 (326), (2019) 5

  7. C. Rolfs, R.E. Azuma, Nucl. Phys. A 227, 291 (1974)

    Article  ADS  Google Scholar 

  8. J.L. Vogl, Thesis, California Institute of Technology,(1963)

  9. C.L.Bailey ,W.R. Stratton, phys. Rev.77, (1950) 194

  10. R.N. Hall, W.A. Fowler, Phys. Rev. 77, 197 (1950)

    Article  ADS  Google Scholar 

  11. W.A. Lamb, R.E. Hester, Phys. Rev 107, 550 (1957)

    Article  ADS  Google Scholar 

  12. S.V. Artemov, S.B. Igamov, Q.I. Tursunmakhatov, R. Yarmukhamedov, Phys. Atom. Nucl. 75, 291 (2012)

    Article  ADS  Google Scholar 

  13. F. Ajzenberg-Selove, Nucl. Phys. A 152, 1 (1970)

    Article  ADS  Google Scholar 

  14. F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991)

    Article  ADS  Google Scholar 

  15. M. Dufour, P. Descouvemont, Phys. Rev. C 56, 1831 (1997)

    Article  ADS  Google Scholar 

  16. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, R. Kunz, J.W. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S. Degl’Innocenti, G. Fiorentini, B. Ricci, S. Zavatarelli, C. Providencia, H. Wolters, J. Soares, C. Grama, J. Rahighi, A. Shotter, M.L. Rachti, Nucl. Phys. A 656, 3 (1999)

    Article  ADS  Google Scholar 

  17. J.T. Huang, C,A, Berutuluani, V. Guimaräes, At. Data Nucl. Data Tables. 96,(2010) 824

  18. Y. Xu, K. Takahashi, S. Goriely, M. Ohra, H. Utsunomiya, Nucl. Phys. A 918, 61 (2013)

    Article  ADS  Google Scholar 

  19. Z.H. Li, J. Su, B. Guo, E.T. Li, Z.C. Li, X.X. Bai, Y.J. Li, J.C. Liu, S.Q. Yan, B.X. Wang, Y.B. Wang, G. Lian, S. Zeng, X. Fang, W.P. Liu, Y.S. Chen, N.C. Shu, Q.W. Fan, Nucl. Phys. A 834, 661 (2010)

    Article  ADS  Google Scholar 

  20. N.K. Timofeyuk, S.B. Igamov, Nucl. Phys. A 713, 217 (2003)

    Article  ADS  Google Scholar 

  21. R. Yarmukhamedov, D. Blokhintsev, Phys. At. Nucl. 81, 616 (2018)

    Article  Google Scholar 

  22. S.V. Artemov, I.R. Gulamov, E.A. Zaparov, IYu. Zotov, G.K. Nie, Yad. Fiz. 59, 454 (1996)

    Google Scholar 

  23. S.V. Artemov, I.R. Gulamov, E.A. Zaparov, IYu. Zotov, G.K. Nie, Phys. At. Nucl. 59, 428 (1996)

    Google Scholar 

  24. S.V. Artemov, Doctorial dissertation (Institute of Nuclear Physics, Uzbekistam Academy of Sciences, Tashkent, 2002)

  25. S.V. Artemov, E.A. Zaparov, G.K. Nie, V. Nadyrbekov, R. Yamukhamedov, Bull. RAN. Ser. Phys. 66, 60 (2002)

    Google Scholar 

  26. S.V. Artemov, E.A. Zaparov, G.K. Nie, V. Nadyrbekov, R. YamukhamedovIzv, RAN. Ser. Fiz. 60, 60 (2002)

    Google Scholar 

  27. L.D. Blokhintsev, R. Yarmukhamedov, S.V. Artemov, I. Boztosun, S.B. Igamov, Q.I. Tursunmakhtov, M.K. Ubaydullaeva, Uzb. J. Phys. 12, 217 (2010)

    Google Scholar 

  28. R. Yarmukhamedov, Q.I. Tursunmahatov, The Universe Evolution: Astrophysical and nuclear aspects (NOVA publishers, 2013) 270

  29. R.E. Tribble, C.A. Bertulani, M. La Cognata, A.M. Mukhamedzhanov, C. Spitaleri, Rep. Prog. Phys. 77, 901 (2014)

    Article  Google Scholar 

  30. A.M. Mukhamedzhanov, H.L. Clark, C.A. Gagliardi, Y.-W. Lui, L. Thache, R.E. Tibble, H.M. Xu, X.G. Zhoú, V. Burjan, J. Cejpek, V. Kroha, F. Carstoiu, Phys. Rev. C 56, 1302 (1997)

    Article  ADS  Google Scholar 

  31. L.D. Blokhintsev, I. Borbely, E.I. Dolinskii, Fiz. Elem. Chastits At. Yadra. 8, 1189 (1977)

    Google Scholar 

  32. L.D. Blokhintsev, I. Borbely, E.I. Dolinskii, Sov. J. Part. Nucl. 8, 485 (1977)

    Google Scholar 

  33. M. Rousseau, C. Beck, C. Bhattacharya, V. Rauch, O. Dorvaux, K. Eddahbi, C. Enaux, R.M. Freeman, F. Haas, D. Mahboub, R. Nouicer, O. Stezowski, S. Szilner, A. Hachem, E. Martin, S.J. Sanders, A.K. Dummer, A. Szanto de Toledo, Phys. Rev. C 66, 034612 (2002)

    Article  ADS  Google Scholar 

  34. M. Rousseau, PhD thesis, Strasbourg University, Report No IReS 01-02, 2001 (unpublished)

  35. N. Burtebayev, M. Nassurlla, A. Sabidolda, S.B. Sakuta, A.A. Karakhodjaev, F.X. Ergashev, K. Rusek, E. Piasecki, A. Trzcińska, M. Wolińska-Cichocka, Michal Kowalczuk, B. Mauyey, D. Janseitov, B. Zalewski, Sh. Hamada, K.W. Kemper , A. Ibraheem, Inter. J.Mod. Phys. E28, No.4, (2019) 1950028

  36. M. Kowalczyk, SMAN: A Code for Nuclear Experiments (Warsaw University report, 1998)

  37. ROOT, A Data Analysis Framework, http://root.cern.ch/drupal/

  38. R.M. DeVries, Phys. Rev. C 8, 951 (1973)

    Article  ADS  Google Scholar 

  39. D.Y. Pang, F.M. Nunes, A.M. Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007)

    Article  ADS  Google Scholar 

  40. N.K. Timofeyuk, Phys. Rev. C 81, 064306 (2010)

    Article  ADS  Google Scholar 

  41. R. Yarmukhamedov, K.I. Tursunmakhatov, N. Burtebayev, Int. J. Mod. Phys. Conf. Series. 49, 1960016 (2019)

    Article  Google Scholar 

  42. R. Yarmukhamedov, K.I. Tursunmakhatov, N. Burtebayev, Int. J. Mod. Phys. Conf. Series. 73, 176 (2009)

    Google Scholar 

  43. R. Yarmukhamedov, K.I. Tursunmakhatov, N. Burtebayev, Bull. RAS. Ser. Phys 73, 165 (2009)

    Google Scholar 

  44. Z.H. Li, Y.J. Li, J. Su, B. Guo, E.T. Li, K.J. Dong, X.X. Bai, Z.C. Li, J.C. Liu, S.Q. Yan, Y.B. Wang, S. Zeng, G. Lian, B.X. Wang, S.J. Jin, X. Liu, W.J. Zhang, W.Z. Huang, Q.W. Fan, L. Gan, Z.D. Wu, W.P. Liu, Phys. Rev. C 87, 017601 (2013)

    Article  ADS  Google Scholar 

  45. A. Barbadoro, F. Pellegrini, G.F. Segato, L. Taffara, I. Gabrielli, M. Bruno, Phys. Rev. C 41, 2435 (1990)

    Article  ADS  Google Scholar 

  46. http://nrv.jinr.ru/nrv/webnrv/elastic_scattering/els1.htm

  47. S.A. Goncharov, J. Dobesh, E.I. Dolinskii, A.M. Mukhamedzhanov, J. Cejpek, Yad. Fiz. 35, 662 (1982)

    Google Scholar 

  48. S.A. Goncharov, J. Dobesh, E.I. Dolinskii, A. M. Mukhamedzhanov and, J. Cejpek. Sov. J. Nucl. Phys. 35, 383 (1982)

  49. I. J. Thompson FRESCO, Department of Physics, University of Surrey, July 2006, Guildford GU2 7XH, England, version FRESCO 2.0, http://www.fresco.org.uk/

  50. O. Tojiboev, R. Yarmukhamedov, S.V. Artemov, S.B. Sakuta, Phys. Rev. C 94, 054616 (2016)

    Article  ADS  Google Scholar 

  51. Yu.F. Smirnov, Yu.M. Tchuvil’sky, Phys. Rev. C 15, 84 (1977)

    Article  ADS  Google Scholar 

  52. O.F. Nemets, V.G. Neudatschin, A.T. Rudchik, et al., Yadernye Associacii v Atomnych Yadrakh i Mnogonuklonnye Reakcii Peredatsch (Naukova Dumka, 1988) 488. (in Russian)

  53. V.M. Kyryanchuk, A.T. Rudchik, A. Budzanowski, V.K. Chernievsky, T. Czosnyka, B. Czech, L. Głowacka, S. Kliczewski, E.I. Koshchy, SYu. Mezhevych, A.V. Mokhnach, K. Rusek, S.B. Sakuta, R. Siudak, I. Skwirczyńska, A. Szczurek, L. Zemło, Nucl. Phys. A 726, 231 (2003)

    Article  ADS  Google Scholar 

  54. A.T. Rudchik, V.M. Kyryanchuk, A. Budzanowski, V.K. Chernievsky, B. Czech, T. Czosnyka, A.V. Głowacka, S. Kliczewski, E.I. Koshchy, SYu. Mezhevych, A.V. Mokhnach, K. Rusek, S.B. Sakuta, R. Siudak, I. Skwirczyńska, A. Szczurek, L. Zemło, Nucl. Phys. A 714, 391 (2003)

    Article  ADS  Google Scholar 

  55. C.M. Perey, F.G. Perey, At data Nucl. Data Tables 17, 1 (1976)

    Article  ADS  Google Scholar 

  56. V.N. Bragin, M.V. Jukov, D.N. Stepanov, L.V. Chulkov, Ya. Yakiel, Yadernaya Fizika 31, 29 (1980)

  57. N. Burtebaev, J.T. Burtebaeva, N.V. Glushchenko, Zh.K. Kerimkulov, A. Amar, M. Nassurulla, S.B. Sakuta, S.V. Artemov, S.B. Igamov, A.A. Karakhodzhaev, K. Rusek, S. Kliczewski, Nucl. Phys. A 909, 20 (2013)

    Article  ADS  Google Scholar 

  58. R. Yarmukhamedov, Yad. Fiz. 60, 1017 (1997)

    Google Scholar 

  59. R. Yarmukhamedov, Phys. At. Nucl. 60, 910 (1997)

    Google Scholar 

  60. S.V. Artemov, S.B. Igamov, R.I. Tursunmakhatov, R. Yarmukhamedov, Izv. RAN. Ser. Fiz. 73, 176 (2009)

    Google Scholar 

  61. S.V. Artemov, S.B. Igamov, R.I. Tursunmakhatov, R. Yarmukhamedov, Bull. RAS. Ser. Phys 73, 165 (2009)

    Google Scholar 

  62. J.C. Fernandes, R. Crespo, F.M. Nunes, Phys. Rev. C 61, 064616 (2000)

    Article  ADS  Google Scholar 

  63. K.G. Nair, H. Voit, M. Hamm, C. Towsley, K. Nagatani, Phys. Rev. Lett. 33, 1588 (1974)

    Article  ADS  Google Scholar 

  64. A.M. Mukhamedzhanov, N.K. Timofeyuk, Yad. Fiz. 51, 679 (1991)

    Google Scholar 

  65. A.M. Mukhamedzhanov, N.K. Timofeyuk, Sov. J. Nucl. Phys. 51, 431 (1991)

  66. N.K. Timofeyuk, Nucl. Phys. A 620, 19 (1998)

    Article  ADS  Google Scholar 

  67. S.B. Igamov, R. Yarmukhamedov, Nucl. Phys. A 781, 247 (2007)

    Article  ADS  Google Scholar 

  68. F. Ajzenberg-Selove, Nucl. Phys. A 449, 1 (1986)

    Article  ADS  Google Scholar 

  69. P. Descouvemont, et all., At. Data and Nucl. Data Tables 88, (2004) 203

  70. F. Riess, P. Paul, J.B. Thomas, S.S. Hanna, Phys. Rev. 176, 1140 (1968)

    Article  ADS  Google Scholar 

  71. R. Caughlan, W.A. Fowler, At. Data Nucl. Data Tables. 40, 283 (1988)

    Article  ADS  Google Scholar 

  72. N.A. Roughton, M.R. Fritts, R.J. Peterson, C.S. Zaidins, C.J. Hansen, At. Data Nucl. Data Tables 23, 177 (1979)

    Article  ADS  Google Scholar 

  73. N. Austern, R.M. Drisko, E.C. Halbert, G.R. Satchler, Phys. Rev. 133, B3 (1966)

    Article  Google Scholar 

  74. F.C. Barker, T. Kajino, Aust. J. Phys. 44, 369 (1991)

    Article  ADS  Google Scholar 

  75. R.J. Holt, H.E. Jackson, R.M. Laszewski, J.E. Monahan, J.R. Spechi, Phys. Rev. C 18, 1962 (1978)

    Article  ADS  Google Scholar 

  76. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1957)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by the Ministry of Education and Science of the Republic of Kazakhstan (Grant # BR10965191, program “Complex research in nuclear and radiation physics, high-energy physics and cosmology for development of the competitive technologies”) and the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement # 654002.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Aurora Tumino.

Appendices

Appendix A: peripherality conditions and the basic formulas for determining the “experimental” ANC for \({}^{12}{\mathrm{C}}+p\rightarrow {}^{13}\mathrm{N}\)

The peripheral character for the \({}^{12}{\mathrm{C}}\)(xy)\({}^{13}{\mathrm{N}}\) proton transfer reaction (x is either \({}^{10}{\mathrm{B}}\) or \({}^3{\mathrm{He}}\)) is conditioned by fulfillment of the relation [22,23,24, 35]

figure a

that is, the left-hand side of Eq. (A1) must not depend on \(b_{Ap}\) for each fixed energy \(E_i\) and scattering angle \(\theta \) belonging to the main peak. Fulfillment of the condition (A1) for the specific peripheral reactions under consideration means that the contribution of the nuclear interior to the calculated \(R ({\mathrm{E}}_i,\theta ;b_{Ap}{\mathrm{}})\) and \(\sigma ^{{\mathrm{(DWBA)}}}({\mathrm{E}}_i,\theta ;b_{Ap})\) functions [44, 73] must be strongly suppressed. This is due to the fact that the dependence of the calculated R and \(\sigma ^{{\mathrm{(DWBA)}}}\) functions on the free parameter \(b_{Ap}\), which is mainly determined by the interior nuclear part of the reaction amplitude, is conditioned only by the factors \(\varphi _{Ap}(\rho ;b_{Ap})/b_{Ap}\) and \(Z_{Ap}^{{\mathrm{1/2}}}\varphi _{Ap}(\rho ;b_{Ap})\) [56], respectively. The letters are included in the integrand functions of the interior part of the radial integrals of the matrix element corresponding to the R and \(\sigma ^{{\mathrm{(DWBA)}}}\) functions, respectively. Here, \(\varphi _{Ap}(\rho ;b_{Ap})\) is the shell model bound-state wave function for the \({}^{13}\mathrm{N}\) nucleus, and \(Z_{Ap}\) is the spectroscopic factor for the \({}^{13}\mathrm{N}\) nucleus in the (\({}^{12}{\mathrm{C}}+p\)) configuration. Therefore, this interior part of the matrix element becomes really model-dependent due to the uncertain free parameters \(b_{Ap}\) and \(Z_{Ap}\). As a rule, the uncertainty associated with the interior nuclear parts above can also be increased by ambiguities in the optical potentials, and this results in a large uncertainty in the absolute value of \(Z_{Ap}\). It follows from this and from Eqs. (2) and (3) that for the peripheral reactions under consideration, the next condition [58, 59]

figure b

must also be fulfilled for each fixed energy \(E_i\) and angle \(\theta \) of the measurement \(\theta \)= \(\theta _j^{\mathrm{{exp}}}\), j = 1,2,...). The fulfillment of the relations (A1) and (A2) (or their violation within the experimental error limits for \(d\sigma ^{{\mathrm{exp}}}/d\Omega \)) allows one to determine the interval of scattering angles \(\theta \) where the dominance of the external interaction occurs for the \( R({\mathrm{E}}_i,\theta ;b_{Ap})\) function calculated at a fixed energy \(E_i\). In this case, Eq. (A2) can be applied to extract the “indirectly determined” value (\(C_{Ap}^{{\mathrm{exp}}}\))\(^{{\mathrm{2}}}\) using the \(d\sigma ^{{\mathrm{exp}}}/d\Omega \) measured within the main maximum of the angular distribution instead of \(d\sigma /d\Omega \).

Appendix B: basic formulas of the modified R-matrix method

Here, we present only the concepts and the essential formulas for the calculation of the astrophysical S factors in the framework of the modified R-matrix method (see, for example, Ref.  [12, 74] and references therein) specific to the \({}^{12}\mathrm{C}(p,\gamma ){}^{13}\mathrm{N}\) reaction. The channel spin and the orbital angular momentum of the resonant proton capture are equal to 1/2 and 0 (or 1), respectively.

We use the system of units in which \(\hbar =c=\) 1.

The astrophysical S factor is determined by the relation

figure c

where \(\sigma ({\mathrm{E}})\) is the reaction cross section, and E and \(\eta \) are the relative kinetic energy and the Coulomb parameter, respectively, of the colliding proton and \({}^{12}{\mathrm{C}}\).

According to [12, 74], within the framework of the modified R-matrix method, the cross section for the reaction \({}^{12}\mathrm{C}(p,\gamma ){}^{13}\mathrm{N}\) populating the ground state of the residual \({}^{13}\mathrm{N}\) nucleus is given by

figure d

where I and \(l_i\) are the channel spin and the relative orbital momentum of the \(p{}^{12}{\mathrm{C}}\)-scattering, respectively, \(\lambda \) is the multipolarity of the electromagnetic transition, and \(k=\sqrt{{\mathrm{2}}\mu E}\), in which \(\mu \) is the reduced mass of p and \({}^{12}{\mathrm{C}}\). In Eq. (B2), \(M_{Jl_i\lambda }({\mathrm{E}})\) is the amplitude of the electromagnetic (\(E\lambda \) and \(M\lambda \)) transition, which is represented in the form

figure e

where \(M^{({\mathrm{R}}_{J};\,({\mathrm{E}}\lambda ,M\lambda ))}_{J\,l_i\,\lambda }\) is the proton capture amplitude of the resonance state with the spin J; \(M^{{\mathrm{(DC}};\,E\lambda )}_{l_i\,\lambda }\)

and \(M^{{\mathrm{(DC}};\,M\lambda )}_{l_i\,\lambda }({\mathrm{E }})\) are the direct proton \(E\lambda \) and \(M\lambda \) capture amplitudes in the ground state of \({}^{13}\mathrm{N}\), respectively. In the single-level approximation, the \(M^({\mathrm{R}}_{{j_{{\mathrm{0}}}}};\,({\mathrm{E}}\lambda ,M\lambda ))_{J{_{{}^{10}B}}_{f}}\,J\,I l_i\,\lambda \) amplitude can be represented in the form [74, 75]

figure f

Here, \(\sigma ^{\mathrm{(c)}}_{l_i}\) and \(\delta ^{{\mathrm{(HS)}}}_{l_i}\) are the Coulomb and hard-sphere phase shifts, respectively, for the \(p{}^{12}{\mathrm{C}}\)-scattering; \(\Gamma _{Jl_i}^p({\mathrm{E}})\) and \(\Gamma _{J\,\lambda }^{\gamma }({\mathrm{E}})\) are the partial proton and radiative \(\gamma \) widths for the resonant decays \({}^{13}{N^*}\rightarrow {}^{12}{\mathrm{C}} +p\) and \({}^{13}\hbox {N}{}^*\rightarrow {}^{13}\mathrm{N}+\gamma \), respectively, and \(\Gamma _{J}({\mathrm{E}})\) is the total width. The energy dependencies of the proton and radiative \(\gamma \) widths are given by the expressions

figure g

and

figure h

where \(k_{\gamma }\) is the photon momentum, \(P_{l_i}\) is the penetrability factor, \(S_c\) is the Thomas shift factor [76], and \(\gamma _{J\,l_i}^p\) and \(\gamma _{J\,\lambda }^{\gamma }\) are the partial reduced proton and radiative \(\gamma \)-ray widths, respectively. The reduced \(\gamma _{J\,\lambda }^{\gamma }\) consists of two parts: the internal [\(\gamma _{J\,\lambda }^{\gamma }\)(int.)] and external channel [\(\gamma _{J\,\lambda }^{\gamma }\)(ext.)] parts; i.e., [75]:

$$\begin{aligned} \gamma _{J\,\lambda }^{\gamma }=\gamma _{J\,\lambda }^{\gamma }{\mathrm{(int.)}}+\gamma _{J\,\lambda }^{\gamma }{\mathrm{(ext.)}} \end{aligned}$$

Here, notations “int” and “ext” refer to the distance from the center of the kernel, where the border is the channel radius. The observable partial proton and radiative \(\gamma \) widths are given by

figure i

It should be noted that in order to set the value of \(\Gamma _{J\,\lambda }^{\gamma }\), it will be necessary to adjust \(\gamma _{J\,\lambda }^{\gamma }\)(int.), while \(\gamma _{J\,\lambda }^{\gamma }\)(ext.) is a quantity being calculated exactly. The explicit expressions for the direct capture amplitudes for the \(E\lambda \) and M1 transitions are presented in [5]. \(\gamma _{J\,\lambda }^{\gamma }\)(ext.) and the amplitudes of the direct radiative capture are characterized by the asymptotic wave functions of the input channel and bound state. In this case, the radial wave function of the final state is normalized using the ANC of the corresponding channel. In other words, \(\gamma _{J\,\lambda }^{\gamma }\)(ext.) (but not \(\gamma _{J\,\lambda }^{\gamma }\) in total) and the amplitudes of direct radiation captures are directly proportional to ANC, which is defined as

$$\begin{aligned} C_{Ap}=\sqrt{\frac{2}{r_{\mathrm{ch}}}}\left( Z_{Ap}\theta _{Ap}^p\right) ^{\mathrm{1/2}}N_f^{1/2}\left[ W_{-\eta _p;l_p+{\mathrm{1/2}}}(2\kappa _p r_{\mathrm{ch}})\right] ^{-1} \end{aligned}$$

where \(N_f\) is the normalization factor and \(\theta _{Ap}^p\) is the dimensionless reduced width amplitude from [62]. Nevertheless, we note only that, in the long-wavelength approximation, they contain a radial integral, which has the form

figure j

where \({\tilde{\lambda }}=\lambda \) and (\(\lambda \)-1) for the \(E\lambda \) and \(M\lambda \) transitions, respectively; \(W_{-\eta _p;l_p+{\mathrm{1/2}}}\)(\(\cdot \cdot \cdot \)) is the Whittaker function; \(\kappa _p=\sqrt{{\mathrm{2}}\mu \varepsilon _p}/\hbar \) in which \(\varepsilon _p\) is the binding energy of the \({}^{13}\mathrm{N}\) in the (\({}^{12}{\mathrm{C}}+p\)) channel, \(\eta _p\) is the Coulomb parameter for the bound \({}^{13}\mathrm{N}\)(\({}^{12}{\mathrm{C}}+p\)) nucleus, and \(I_{l_i}({\mathrm{kr}})\) and \(O_{l_i}({\mathrm{kr}})\) are the incoming and outgoing solutions, respectively, of the radial Schrödinger equation.

As is seen from expression (B7), the strengths of the total direct capture amplitude and the channel radiative \(\gamma \) width are determined by the ANC for \({}^{12}{\mathrm{C}}+p\rightarrow {}^{13}\mathrm{N}\). Hence, introduction of information about the “experimental” ANC to the resonance and direct capture amplitudes makes it possible to reduce the uncertainty of the total S(E) astrophysical S factors calculated for the \({}^{12}{\mathrm{C}}(p,\gamma ){}^{13}{\mathrm{N}}\) reaction in the thermonuclear energy region to a minimum.

The Maxwellian-averaged reaction rates \(N_A\langle \sigma v\rangle \) are given by [1, 2]

figure k

as a function of the temperature T. \(N_A\) is the Avogadro number; \(k_B\) is the Boltzmann constant; and \(v=\sqrt{{\mathrm{2}}E/\mu }\), where \(Z_ke\) is the charge of the particle k.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemov, S.V., Yarmukhamedov, R., Burtebayev, N. et al. Asymptotic normalization coefficient for \({{}^{12}\mathrm{C}}+p\rightarrow {{}^{13}\mathrm{N}}\) from the \({}^{12}{\mathrm{C}}({}^{10}\mathrm{B},{}^{9}{\mathrm{Be}}){}^{13}\mathrm{N}\) reaction and the \({}^{12}\mathrm{C}(p,\gamma ){}^{13}\mathrm{N}\) astrophysical S factor. Eur. Phys. J. A 58, 24 (2022). https://doi.org/10.1140/epja/s10050-021-00652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00652-z

Navigation