Skip to main content
Log in

Determination of astrophysical 7Be(p, γ)8B reaction rates from the 7Li(d, p)8Li reaction

  • Article
  • Nuclear Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The 7Be(p, γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coefficient (ANC) for the virtual decay 8B g.s. 7Be + p. By using the charge symmetry relation, we obtain this proton ANC with the single neutron ANC of 8Li g.s. 7Li + n, which is determined with the distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) analysis of the 7Li(d, p)8Li angular distribution. The astrophysical S-factors and reaction rates of the direct capture process in the 7Be(p, γ)8B reaction are further deduced at energies of astrophysical relevance. The astrophysical S-factor at zero energy for direct capture, S 17(0), is derived to be (19.9 ± 3.5) eV b in good agreement with the most recent recommended value. The contributions of the 1+ and 3+ resonances to the S-factor and reaction rate are also evaluated. The present result demonstrates that the direct capture dominates the 7Be(p, γ)8B reaction in the whole temperature range. This work provides an independent examination to the current results of the 7Be(p, γ)8B reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelberger E G, Garcia A, Hamish R, et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev Mod Phys, 2011, 83: 195–245

    Article  ADS  Google Scholar 

  2. Haxton W C, Robertson R G H, Serenelli A M. Solar neutrinos: Status and prospects. Ann Rev Astron Astrophys, 2013, 51: 21–61

    Article  ADS  Google Scholar 

  3. Ahmed S N, Anthony A E, Beier E W, et al. Measurement of the total active 8B solar neutrino flux at the sudbury neutrino observatory with enhanced neutral current sensitivity. Phys Rev Lett, 2004, 92: 181301

    Article  ADS  Google Scholar 

  4. Bahcall J N, Pinsonneault M H. What do we (not) know theoretically about solar neutrino fluxes? Phys Rev Lett, 2004, 92: 121301

    Article  ADS  Google Scholar 

  5. Bromm V, Larson R B. The first stars. Annu Rev Astron Astrophys, 2004, 42: 79–118

    Article  ADS  Google Scholar 

  6. Fuller G M, Woosley S E, Weaver T A. The evolution of radiationdominated stars. I. Nonrotating supermassive stars. Astrophys J, 1986, 307: 675–686

    Article  ADS  Google Scholar 

  7. WiescherM,Görres J, Graff S, et al. The hot proton-proton chains in low-metallicity objects. Astrophys J, 1989, 343: 352–364

    Article  ADS  Google Scholar 

  8. Filippone B W, Elwyn A J, Davids C N, et al. Measurement of the 7Be(p, γ)8B reaction cross section at low energies. Phys Rev Lett, 1983, 50: 412–416

    Article  ADS  Google Scholar 

  9. Filippone B W, Elwyn A J, Davids C N, et al. Proton capture cross section of 7Be and the flux of high energy solar neutrinos. Phys Rev C, 1983, 28: 2222–2229

    Article  ADS  Google Scholar 

  10. Baby L T, Bordeanu C, Goldring G, et al. Precision measurement of the 7Be(p, γ)8B cross section with an implanted 7Be target. Phys Rev Lett, 2003, 90: 022501

    Article  ADS  Google Scholar 

  11. Junghans A R, Mohrmann E C, Snover K A, et al. Precise measurement of the 7Be(p, γ)8B S factor. Phys Rev C, 2003, 68: 065803

    Article  ADS  Google Scholar 

  12. Terrasi F, Gialanella L, Imbriani G, et al. Direct measurement of the absolute cross section of p(7Be,γ)8B. Nucl Phys A, 2001, 688: 539–542

    Article  ADS  Google Scholar 

  13. Gialanella L, Strieder F, Campajola L, et al. Absolute cross section of p(7Be,γ)8B using a novel approach. Eur Phys J A, 2000, 7: 303–305

    ADS  Google Scholar 

  14. Baur G, Bertulani C A, Rebel H. Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest. Nucl Phys A, 1986, 458: 188–204

    Article  ADS  Google Scholar 

  15. Iwasa N, Boué F, Surówka G, et al. Measurement of the Coulomb dissociation of 8B at 254 MeV/nucleon and the 8B solar neutrino flux.Phys Rev Lett, 1999, 83: 2910–2913

    Article  ADS  Google Scholar 

  16. Davids B, Anthony D W, Aumann T, et al. S17(0) determined from the Coulomb breakup of 83 MeV/nucleon 8B. Phys Rev Lett, 2001, 86: 2750–2753

    Article  ADS  Google Scholar 

  17. Schümann F, Hammache F, Typel S, et al. Low-energy cross section of the 7Be(p, γ)8B solar fusion reaction from the Coulomb dissociation of 8B. Phys Rev C, 2006, 73: 015806

    Article  ADS  Google Scholar 

  18. Schümann F, Hammache F, Typel S, et al. Coulomb dissociation of 8B and the low-energy cross section of the 7Be(p, γ)8B solar fusion reaction. Phys Rev Lett, 2003, 90: 232501

    Article  ADS  Google Scholar 

  19. Liu W P, Bai X X, Zhou S H, et al. Angular distribution for the 7Be(d, n)8B reaction at E c.m. = 5.8 MeV and the S17(0) factor for the 7Be(p, γ)8B reaction. Phys Rev Lett, 1996, 77: 611–614

    Article  ADS  Google Scholar 

  20. Azhari A, Burjan V, Carstoiu F, et al. Asymptotic normalization coefficients and the 7Be(p, γ)8B astrophysical S factor. Phys Rev C, 2001, 63: 055803

    Article  ADS  Google Scholar 

  21. Ogata K, Yahiro M, Iseri Y, et al. Determination of S17 from 7Be(d, n)8B reaction. Phys Rev C, 2003, 67: 011602

    Article  ADS  Google Scholar 

  22. Das J J, Datar M, Sugathan P, et al. Astrophysical S 17(0) factor from a measurement of the 2H(7Be,8B)n reaction at E c.m. = 4.5 MeV. Phys Rev C, 2006, 73: 015808

    Article  ADS  Google Scholar 

  23. Barker F C. The low-energy 7Be(p, γ)8B cross section from an Rmatrix approach. Nucl Phys A, 1995, 588: 693–705

    Article  ADS  Google Scholar 

  24. Robertson G H. Proton capture by 7Be and the solar neutrino problem. Phys Rev C, 1973, 7: 543–547

    Article  ADS  Google Scholar 

  25. Typel S, Wolter H H, Baur G. Higher-order effects in the Coulomb dissociation of 8B into 7Be + p. Nucl Phys A, 1997, 613: 147–164

    Article  ADS  Google Scholar 

  26. Descouvemont P, Baye D. Microscopic study of the 7Li(n,γ)8Li and 7Be(p, γ)8B reactions in a multiconfiguration three-cluster model. Nucl Phys A, 1994, 567: 341–353

    Article  ADS  Google Scholar 

  27. Csótó A, Langanke K, Koonin S E, et al. 7Be(p, γ)8B cross section and the properties of 7Be. Phys Rev C, 1995, 52: 1130–1133

    Article  ADS  Google Scholar 

  28. Descouvemont P. Reanalysis of the 7Be(p, γ)8B S factor in a microscopic model. Phys Rev C, 2004, 70: 065802

    Article  ADS  Google Scholar 

  29. Navrátil P, Bertulani C A, Caurier E. 7Be(p, γ)8B S factor from ab initio no-core shell model wave functions. Phys Rev C, 2006, 73: 065801

    Article  ADS  Google Scholar 

  30. Navrátil P, Roth R, Quaglioni S. Ab initio many-body calculation of the 7Be(p, γ)8B radiative capture. Phys Lett B, 2011, 704: 379–383

    Article  ADS  Google Scholar 

  31. Schiffer J P, Morrison G C, Siemssen R H. Study of the (d,p) reaction in the 1p shell. Phys Rev, 1967, 64: 1274–1284

    Article  ADS  Google Scholar 

  32. Timofeyuk N K, Johnson R C, Mukhamedzhanov A M. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance to nuclear astrophysics. Phys Rev Lett, 2003, 91: 232501

    Article  ADS  Google Scholar 

  33. Timofeyuk N K, Descouvemont P. Asymptotic normalization coefficients for mirror virtual nucleon decays in a microscopic cluster model. Phys Rev C, 2005, 71: 064305

    Article  ADS  Google Scholar 

  34. Guo B, Li Z H, Liu WP, et al. The 8Li(d, p)9Li reaction and astrophysical 8B(p, γ)9C reaction rate. Nucl Phys A, 2005, 761: 162–172

    Article  ADS  Google Scholar 

  35. Guo B, Li Z H, Bai X X, et al. Determination of the astrophysical 26Si(p, γ)27P reaction rate from the asymptotic normalization coefficients of 27Mg →26Mg + n. Phys Rev C, 2006, 73: 048801

    Article  ADS  Google Scholar 

  36. Guo B, Li Z H, Liu W P, et al. Determination of astrophysical 11C(p, γ)12N reaction rate from the asymptotic normalization coefficients of 12B →11B + n. J Phys G, 2007, 34: 103–114

    Article  ADS  Google Scholar 

  37. Thompson I J. Coupled reaction channels calculations in nuclear physics. Comput Phys Rep, 1988, 7: 167–212

    Article  ADS  Google Scholar 

  38. Johnson R C, Soper P J R. Contribution of deuteron breakup channels to deutron stripping and elastic scattering. Phys Rev C, 1970, 1: 976–990

    Article  ADS  Google Scholar 

  39. Wales G L, Johnson R C. Deuteron break-up effects in (p,d) reactions at 65 MeV. Nucl Phys A, 1976, 274: 168–176

    Article  ADS  Google Scholar 

  40. Varner R L, Thompson W J, Mcabee T L, et al. A global nucleon optical model potential. Phys Rev, 1991, 201: 57–119

    Google Scholar 

  41. Koning A J, Delaroche J P. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A, 2003, 713: 231–310

    Article  ADS  Google Scholar 

  42. Blokhintsev L D, Borbely I, Dolinskii E I. Nuclear vertex constants. Sov J Part Nucl, 1977, 8: 485

    Google Scholar 

  43. Trache L, Azhari A, Carstoiu F, et al. Asymptotic normalization coefficients for 8B → 7Be + p from a study of 8Li → 7Li+ n. Phys Rev C, 2003, 67: 062801

    Article  ADS  Google Scholar 

  44. Bertulani C A. RADCAP: A potential model tool for direct capture reactions. Comput Phys Commun, 2003, 156: 123–141

    Article  ADS  Google Scholar 

  45. Rolfs C E, Rodney W S. Cauldrons in the Cosmos. Chicago: University of Chicago Press, 1988

    Google Scholar 

  46. Ajzenberg-Selove F. Energy levels of light nuclei A = 5−10. Nucl Phys A, 1988, 490: 1–225

    Article  ADS  Google Scholar 

  47. Baby L T, Bordeanu C, Goldring G, et al. New measurement of the proton capture rate on 7Be and S17(0) factor. Phys Rev C, 2003, 67: 065805

    Article  ADS  Google Scholar 

  48. Strieder F, Gialanella L, Gyürky G, et al. Absolute cross section of 7Be(p, γ)8B. Nucl Phys A, 2001, 696: 219–230

    Article  ADS  Google Scholar 

  49. Junghans A R, Snover K A, Mohrmann E C, et al. Updated S factors for the 7Be(p, γ)8B reaction. Phys Rev C, 2010, 81: 012801

    Article  ADS  Google Scholar 

  50. Hammache F, Bogaert G, Aguer P, et al. New measurement and analysis of the 7Be(p, γ)8B cross section. Phys Rev Lett, 1998, 80: 928–931

    Article  ADS  Google Scholar 

  51. Hammache F, Bogaert G, Aguer P, et al. Low-energy measurement of the 7Be(p, γ)8B cross section. Phys Rev Lett, 2001, 80: 3985–3988

    Article  ADS  Google Scholar 

  52. Adelberger E G, Austin S M, Bahcall J N, et al. Solar fusion cross sections. Rev Mod Phys, 1998, 70: 1265–1291

    Article  ADS  Google Scholar 

  53. Motobayashi T, Iwasa N, Ando Y, et al. Coulomb dissociation of 8B and the 7Be(p, γ)8B reaction at low energies. Phys Rev Lett, 1994, 73: 2680–2683

    Article  ADS  Google Scholar 

  54. Howell D, Davids B, Greene J P, et al. First determination of the 8Li valence neutron asymptotic normalization coefficient using the 7Li(8Li,7Li)8Li reaction. Phys Rev C, 2013, 88: 025804

    Article  ADS  Google Scholar 

  55. Caughlan G R, Fowler W A. Thermonuclear reaction rates V. At Data Nucl Data Tables, 1988, 40: 283–334

    Article  ADS  Google Scholar 

  56. Angulo C, Arnould M, Rayet M, et al. A compilation of chargedparticle induced thermonuclear reaction rates. Nucl Phys A, 1999, 656: 3–183

    Article  ADS  Google Scholar 

  57. Xu Y, Takahashi K, Goriely S, et al. NACRE II: An update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A < 16. Nucl Phys A, 2013, 918: 61–169

    Article  ADS  Google Scholar 

  58. Rauscher T, Thielemann F K. Tables of nuclear cross sections and reaction rates: an addendum to the paper “astrophysical reaction rates from statistical model calculations”. At Data Nucl Data Tables, 2001, 79: 47–64

    Article  ADS  Google Scholar 

  59. Jones K L, Adekola A S, Bardayan D W, et al. The magic nature of 132Sn explored through the single-particle states of 133Sn. Nature, 2010, 465: 454–457

    Article  ADS  Google Scholar 

  60. Liu W P, Li Z H, Bai X X, et al. BRIF and CARIF progress. Sci China-Phys Mech Astron, 2011, 54: 14–17

    Article  ADS  Google Scholar 

  61. Xu HM, Gagliardi C A, Tribble R E, et al. Overall normalization of the astrophysical S factor and the nuclear vertex constant for 7Be(p, γ)8B reactions. Phys Rev Lett, 1994, 73: 2027–2030

    Article  ADS  Google Scholar 

  62. Azhari A, Burjan V, Carstoiu F, et al. The 10B(7Be, 8B)9Be reaction and the 7Be(p, γ)8B S factor. Phys Rev Lett, 1999, 82: 3960–3963

    Article  ADS  Google Scholar 

  63. Li Z H, Su J, Guo B, et al. Determination of the 12C(p, γ)13N reaction rates from the 12C(7Li, 6He)13N reaction. Sci China-Phys Mech Astron, 2010, 53: 658–663

    Article  ADS  Google Scholar 

  64. Li Z H, Li E T, Su J, et al. Study of the primordial lithium abundance. Sci China-Phys Mech Astron. 2011, 54: 67–72

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Guo, B., Li, Z. et al. Determination of astrophysical 7Be(p, γ)8B reaction rates from the 7Li(d, p)8Li reaction. Sci. China Phys. Mech. Astron. 58, 1–7 (2015). https://doi.org/10.1007/s11433-015-5653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5653-z

Keywords

Navigation