Skip to main content

Advertisement

Log in

Froissaron and Maximal Odderon with spin-flip in pp and \(\bar{p}p\) high energy elastic scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The scattering amplitude with spin-non-fiip and spin-flip components represented by Froissaron, Maximal Odderon as well as by standard Regge poles contributions is considered. From the fit to the data of pp and \(\bar{p}p\) scattering at high energy and not too large momentum transfers we found that this model taking into account the spin is available to describe not only the differential, total cross section and \(\rho \), but also the existing experimental data on polarization. It allows to make some predictions about spin effects at high energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The datasets generated and used during the study are available in the HEPdata repository, https://www.hepdata.net. These datasets are available as well from the corresponding author on reasonable request.]

References

  1. N.H. Buttimore et al. The spin dependence of high-energy proton scattering. Phys. Rev. D59, 114010 (1999). arxiv:hep-ph/9901339v1

  2. E. Leader, Spin in Particle Physics (Cambridge University Press, Cambridge, 2001), p. 500

    Book  Google Scholar 

  3. C. Ewerz, P. Lebiedowicz, O. Nachtmann, A. Szczurek, Phys. Lett. B 763, 382 (2016). arxiv:1606.08067v1

    Article  ADS  Google Scholar 

  4. S. Donnachie, G. Dosch, P. Landshoff, O. Nachtmann, Pomeron Physics and QCD (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  5. S.M. Troshin, N.E. Tyurin, Spin Phenomena in Particle Interactions (World Scientific Publishing Company, Singapore, 1994), p. 224

    Book  Google Scholar 

  6. A.F. Martini, E. Predazzi, Diffractive effects in spin flip pp amplitudes and predictions for relativistic energies. Phys. Rev. D 66, 034029 (2002). arXiv:0209.027v1

  7. K. Hinotani, H.A. Neal, E. Predazzi, G. Walters, Behavior of the spin-flip amplitude in high-energy proton-proton and pion-proton elastic scatterings. Nuovo Cimento 52A, 363 (1979)

    Article  ADS  Google Scholar 

  8. G. Fidecaro et al., Measurement of the polarization parameter in pp elastic scattering at \(p_{lab}\)=150 GeV/c. Nucl. Phys. B173, 513 (1980)

    Article  ADS  Google Scholar 

  9. G. Fidecaro et al., Measurement of the differential cross section and of the polarization parameter in \(pp\) elastic scattering at \(p_{lab}\)=200 GeV/c. Phys. Lett. 105B, 309 (1981)

    Article  ADS  Google Scholar 

  10. R.V. Kline et al., Polarization parameters and angular distributions in pi-p elastic scattering at 100 GeV/c and in \(pp\) elastic scattering at \(p_{lab}\)100 GeV/c and 300 GeV/c. Phys. Rev. D 22, 553 (1980)

    Article  ADS  Google Scholar 

  11. L. Adamczyk et al., STAR Collaboration, Single spin asymmetry \(A_N\) in polarized proton–proton elastic scattering at \(\sqrt{s}\)= 200 GeV, Phys. Lett. B 719, 62–69 (2013). arxiv:1206.1928v3

  12. K.G. Boreskov, A.M. Lapidus, S.T. Sukhorukov, K.A. Ter-Martirosyan, Elastic scattering and charge exchange reactions at high energy in the theory of complex angular momentum. Sov. J. Nucl. Phys. 14, 814 (1971)

    Google Scholar 

  13. J.-R. Cudell, E. Predazzi and O.V. Selyugin. High-energy hadron spin-flip amplitude at small momentum transfer and new \(A_{\nu }\) data from RHIC. EPJ A 10012-2 (2004). arxiv:hep-ph/0401040v1

  14. O.V. Selyugin, J.R. Cudell, Odderon, HEGS model and LHC data. Acta Phys. Polon. Supp. 12, 4 (2019). arxiv:1512.05130v1

    Article  Google Scholar 

  15. O. V. Selyugin, High energy hadron spin flip amplitude. Phys. Part. Nucl. Lett. 13 3, 303 (2016). arxiv:1512.05130v1

  16. B.Z. Kopeliovich, M. Krelina, I.K. Potashnikova, Probing the Pomeron spin structure with Coulomb-nuclear interference. Phys. Lett. B 816, 136262 (2021). arxiv:1910.04799v3

    Article  Google Scholar 

  17. O.V. Selyugin, Nucleon structure and spin effects in elastic hadron scattering. Symmetry 13, 164 (2021). arXiv:2012.08891v3 [hep-ph]

  18. M.V. Galynskii, E.A. Kuraev, Alternative way to understand the unexpected result of JLab polarization. Phys. Rev. D 89, 054005 (2014). arxiv:1312.3742v3

    Article  ADS  Google Scholar 

  19. TOTEM Collaboration, G. Antchev et al. Proton-proton elastic scattering at the LHC energy of \(\sqrt{s}\)=7 TeV. EPL 95 41001 (2011). arxiv:1110.1385v1

  20. TOTEM Collaboration, G. Antchev et al. First measurement of the total proton-proton cross-section at the LHC energy of \(\sqrt{s}\)= 7 TeV. EPL 96, 21002 (2011). arxiv:1110.1395v1

  21. TOTEM Collaboration, G. Antchev et al. Measurement of proton-proton elastic scattering and total cross-section at \(\sqrt{s}\) = 7 TeV. EPL 101, 21002 (2013) (CERN-PH-EP-2012-352.pdf)

  22. TOTEM Collaboration, G. Antchev et al. Luminosity-independent measurements of total, elastic and inelastic cross-section at \(\sqrt{s}\)= 7 TeV, EPL 101, 21004 (2013) (CERN-PH-EP-2012-353.pdf)

  23. TOTEM Collaboration, G. Antchev et al. Luminosity- independent measurements of proton-proton total cross section at \(\sqrt{s}\) = 8 TeV. Phys. Rev. Lett. 111, 012001 (2013) (CERN-PH-EP-2012-354)

  24. TOTEM Collaboration, G. Antchev et al. Evidence for Non-Exponential elastic proton-proton differential cross section at low \(|t|\) and \(\sqrt{s}\)=8 TeV. Nucl. Phys. B899, 527 (2015). arxiv:1503.08111v4

  25. TOTEM Collaboration, G. Antchev et al. Measurement of elastic pp scattering at \(\sqrt{s}\) = 8 TeV in the Coulomb – Nuclear interference region – determination of the \(\rho \) parameter and the total cross section. Eur. Phys. J. C76, 661 (2016). arxiv:1610.00603v1

  26. TOTEM Collaboration, G. Antchev et al. First measurement of elastic, inelastic and total cross section at \(\sqrt{s}\)=13 TeV by TOTEM and overview of cross section data at LHC energies. Eur. Phys. J. C 79, 103 (2019). arxiv:1712.06153v2

  27. TOTEM Collaboration, G. Antchev et al. First determination of the \(\rho \) parameter at \(\sqrt{s}\)=13 TeV: Probing the existence of a colourless C-odd three-gluon compound state. Eur. Phys. J. C 79, 785 (2019). arxiv:1812.04732v1

  28. TOTEM Collaboration, G. Antchev et al. Elastic differential cross-section measurement at \(\sqrt{s}\)=13 TeV by TOTEM. Eur. Phys. J. C 79, 861 (2019). arxiv:1812.08283v1

  29. TOTEM Collaboration, G. Antchev et al. Elastic differential cross-section at \(\sqrt{s}\) = 2.76 TeV and implications on the existence of a colorless 3-gluon bound state. Eur. Phys. J. C80, 91 (2020). arxiv:1812.08610v1

  30. Y. Hagiwara, Y. Hatta, R. Pasechnik, J. Zhou, Spin-dependent Pomeron and Odderon in elastic proton-proton scattering. EPJC 80, 427 (2020). arxiv:2003.03680

    Article  ADS  Google Scholar 

  31. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Central exclusive diffractive production of \(K^+ K^- K^+ K^-\) via intermediate \(\phi \phi \) state in proton-proton collisions. Phys. Rev. D 99, 094034 (2019)

    Article  ADS  Google Scholar 

  32. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Searching for the odderon in \(p p \rightarrow p p K^+ K^-\) and \(pp \rightarrow p p \mu ^+ \mu ^-\) reaction in the \(\phi (1020)\) resonance region at the LHC. Phys. Rev. D 101, 094012 (2020)

    Article  ADS  Google Scholar 

  33. R.A. Janik, J. Wosiek, Phys. Rev. Lett. 82, 1092 (1999)

    Article  ADS  Google Scholar 

  34. J. Bartels, L.N. Lipatov, G.P. Vacca, Phys. Lett. B 447, 178 (2000)

  35. L. Łukaszuk, B. Nicolescu, Lett. Nuovo Cim. 8, 405 (1973)

    Article  Google Scholar 

  36. E. Martynov, B. Nicolescu. Did TOTEM experiment discover the Odderon Phys. Lett. B778, 414 (2018). arxiv:1711.03288v6

  37. E. Martynov, B. Nicolescu. Evidence for maximality of strong interactions from LHC forward data. B786, 207 (2018). arxiv:1804.10139v3

  38. E. Martynov, B. Nicolescu. Odderon effects in the differential cross-sections at Tevatron and LHC energies. EPJ C 79, 461 (2019). arxiv:1808.08580v3

  39. T. Csörgő, T. Novák, R. Pasechnik, et al., Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies. Eur. Phys. J. C 81, 180 (2021). arXiv:1912.11968v3

  40. V.M. Abazov et al., Comparison of \(pp\) and \(\bar{p}p\) differential elastic cross sections and observation of the exchange of a colorless C-odd gluonic compound, FERMILAB-PUB-20-568-E, CERN-EP-2020-236. arxiv:2012.03981v1

  41. T. Csörgő, I. Szanyi, Observation of Odderon Effects at LHC energies—a real extended Bialas-Bzdak model study. Eur. Phys. J. C 81, 611 (2021). arxiv:2005.14319v3

  42. G. Auberson, T. Kinoshita, A. Martin, Phys. Rev. D 3, 3185 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  43. https://pdg.lbl.gov/2017 ; C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016) and 2017 update. https://pdg.lbl.gov/2017/hadronic-xsections/hadron.html

  44. https://www.hepdata.net (the old version of the Data Base is available at http://hepdata.cedar.ac.uk)

Download references

Acknowledgements

We thank Prof. B. Nicolescu and Prof. S.M. Troshin for a careful reading the manuscript, comments and useful discussions. E.M. and G.T. were partially supported by the Project of the National Academy of Sciences of Ukraine (0118U003197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Martynov.

Additional information

Communicated by Reinhard Alkofer

Appendices

Appendix A: Simplified FMO model

The simple and dipole Pomerons (Odderons) for both components have a conventional form:

$$\begin{aligned}&P^{(S)}_{1}(s,t)=-g^{(S)}_{1,p}{\tilde{s}}^{\alpha _p(t)}e^{\beta ^{(S)}_{1,p}\tau _p}, \nonumber \\&P^{(D)}_{1}(s,t)=-g^{(D)}_{1,p} \xi {\tilde{s}}, ^{\alpha _p(t)}e^{\beta ^{(D)}_{1,p}\tau _p},\nonumber \\&\tau _p=2m_\pi ^2-\sqrt{4m_\pi ^2-t}, \end{aligned}$$
(A.1)
$$\begin{aligned} O^{(S)}_{1}(s,t)&=ig^{(S)}_{1o}{\tilde{s}}^{\alpha _o(t)}e^{\beta ^{(S)}_{1,o}\tau _o},\nonumber \\ O^{(D)}_{1}(s,t&)=ig^{(D)}_{1,o}\xi {\tilde{s}}^{\alpha _o(t)}e^{\beta ^{(D)}_{1,o}\tau _0},\nonumber \\ \tau _0&=3m_\pi ^2-\sqrt{9m_\pi ^2-t}. \end{aligned}$$
(A.2)

where \({\tilde{s}}=-i(s-2m^2)/2m^2\), \(\xi =\ln ({\tilde{s}})\).

It is important that we use for single and double j-poles the pomeron and odderon intercepts equal to one

$$\begin{aligned} \alpha _p(t)=1+\alpha '_pt, \qquad \alpha _o(t)=1+\alpha '_ot. \end{aligned}$$
(A.3)

avoiding a violation of unitary restriction for total cross sections.

$$\begin{aligned}&P^{(S)}_{5}(s,t)=-g^{(S)}_{5,p}\dfrac{\sqrt{-t}}{2m}\lambda _+(t)\tilde{s}^{\alpha _p(t)}e^{\beta ^{(S)}_{5,p}\tau _p},\nonumber \\&P^{(D)}_{5}(s,t)=-g^{(D)}_{5,p}\dfrac{\sqrt{-t}}{2m}\lambda _+(t)\xi {\tilde{s}}^{\alpha _p(t)}e^{\beta ^{(D)}_{5,p}\tau _p}, \end{aligned}$$
(A.4)
$$\begin{aligned}&O^{(S)}_{5}(s,t)=ig^{(S)}_{5,o}\dfrac{\sqrt{-t}}{2m}\lambda _-(t)\tilde{s}^{\alpha _o(t)}e^{\beta ^{(S)}_{1,o}\tau _o},\nonumber \\&O^{(D)}_{5}(s,t)=ig^{(D)}_{5,o}\dfrac{\sqrt{-t}}{2m}\lambda _-(t)\xi {\tilde{s}}^{\alpha _o(t)}e^{\beta ^{(DS)}_{5,0}\tau _po} \end{aligned}$$
(A.5)

where m is proton mass. A choice of \(\lambda _{\pm }(t)\) is discussed in the Sect. 3.1 .

The tripole terms \(P^{(T)}, O^{(T)}\), containing only asymptotic main components from the Froissaron and Maximal Odderon [38]), which are defined in according with the AKM asymptotic theorem [42]

$$\begin{aligned}&P^{(T)}_1(s,t)=-g^{(T)}_{1,p}{\tilde{s}}\xi ^2 \dfrac{2J_1(z_p)}{z_p}e^{\beta ^{(T)}_{1,p}\tau _p},\nonumber \\&P^{(T)}_5(s,t)=-g^{(T)}_{5,p}\dfrac{\sqrt{-t}}{2m}\lambda _p(t)\tilde{s}\xi ^2\dfrac{2J_1(z_p)}{z_p}e^{\beta ^{(T)}_{5,p}\tau _p}, \end{aligned}$$
(A.6)
$$\begin{aligned}&O^{(T)}_1(s,t)=ig^{(T)}_{1,o}\tilde{s}\xi ^2\dfrac{2J_1(z_o)}{z_o}e^{\beta ^{(T)}_{1,o}\tau _o},\nonumber \\&O^{(T)}_5(s,t)=ig^{(T)}_{5,o}\dfrac{\sqrt{-t}}{2m}\lambda _o(t)\tilde{s}\xi ^2\dfrac{2J_1(z_o)}{z_o}e^{\beta ^{(T)}_{1,o}\tau _o}, \end{aligned}$$
(A.7)

where \(z_p=r_p\tau \xi , \quad z_o=r_o\tau \xi , \quad \tau =\sqrt{-t/t_0}, \quad t_0=1\, \text {GeV}^2, \quad r_p, r_o\) are constants.

Contributions of the secondary reggeons, f and \(\omega \) have a standard form

$$\begin{aligned}&R^{(f)}_1(s,t)=-g^{(f)}_{1}{\tilde{s}}^{\alpha _f(t)}e^{\beta ^{(f)}_{1}\tau _p}, \nonumber \\&R^{(f)}_5(s,t)=-g^{(f)}_{5}\dfrac{\sqrt{-t}}{2m}\lambda _p(t)\tilde{s}^{\alpha _f(t)}e^{\beta ^{(f)}_{5}\tau _p},\nonumber \\&\alpha _f(t)=\alpha _f(0)+\alpha '_f t,\end{aligned}$$
(A.8)
$$\begin{aligned}&R^{(\omega )}_1(s,t)=ig^{(\omega )}_{1}\tilde{s}^{\alpha _f(t)}e^{\beta ^{(\omega )}_{1}\tau _o},\nonumber \\&R^{(\omega )}_5(s,t)=ig^{(\omega )}_{5}\dfrac{\sqrt{-t}}{2m}\lambda _o(t) {\tilde{s}}^{\alpha _\omega (t)}e^{\beta ^{(\omega )}_{5}\tau _o}, \nonumber \\&\alpha _\omega (t)=\alpha _\omega (0)+\alpha '_\omega t. \end{aligned}$$
(A.9)

Appendix B: Original FMO model

We write here the explicit spin-non-flip terms of the FMO model at \(t\le 0\) [38] just for reader’s convenience. The only difference of [38] is a notation for constants and functions. Spin-flip terms are presented and discussed in Sect. 3.2.

Froissaron and Maximal Odderon are written in the following form

$$\begin{aligned}&\begin{array} {ll} \dfrac{1}{iz}P^{(F)}_1(z_t,t)=h_{1,1}\xi ^2\dfrac{2J_{1}(r_{+}\tau \xi )}{r_{+}\tau \xi }e^{\beta ^{(F)}_{1,1}\tau _p} \\ \quad +h_{1,2}\xi \dfrac{\sin (r_{+}\tau \xi )}{r_+\tau \xi }e^{\beta ^{(F)}_{1,2}\tau _p} +h_{1,3}J_0(r_{+}\tau \xi )e^{\beta ^{(F)}_{1,3}\tau _p} ,\\ \end{array} \end{aligned}$$
(B.10)
$$\begin{aligned}&\begin{array}{ll} \dfrac{1}{z}O_1^{(M)}(z_t,t)= o_{1,1}\xi ^2\dfrac{2J_{1}(r_{-}\tau \xi )}{r_{-}\tau \xi }e^{\beta ^{(O)}_{1,1}\tau _o} \\ \quad + o_{1,2}\xi \dfrac{\sin (r_{-}\tau \xi )}{r_{-}\tau \xi }e^{\beta ^{(OM)}_{1,2}\tau _o} +o_{1,3}J_0(r_{-}\tau \xi )e^{\beta ^{(M)}_{1,3}\tau _o} ,\\ \end{array} \end{aligned}$$
(B.11)

where \(z=2m^2z_t, \quad \xi =\ln (-iz_t), \quad \tau =\sqrt{-t/t_0}, \quad t_0=1\,\,\text {GeV}^2\), \(r_- =r_+ -\delta r_-,\quad \delta r_-\ge 0\).

The effective secondary Regge pole contributions (crossing-even f and crossing-odd \(\omega \)) have the form

$$\begin{aligned} \begin{aligned}&{R_1^{(K)}}(z_t,t)=-\left( {\begin{array}{c}1\\ i\end{array}}\right) 2m^2g_1^{(K)}(-iz_t)^{\alpha _K(t)}e^{b_1^{(K)}t}\\&\alpha _K(t)=\alpha _K(0)+\alpha '_K t,\quad K=f,\omega \end{aligned} \end{aligned}$$
(B.12)

In order to perform calculations of the standard pomeron and odderon cuts in explicit analytical form we have made replacement \(z_t\rightarrow z_0=z_t(t=0)\)

$$\begin{aligned} \begin{aligned}&{R_1^{(L)}}(z_0,t)=-\left( {\begin{array}{c}1\\ i\end{array}}\right) 2m^2g_1^{(L)}(-iz_0)^{\alpha _L (t)}\\&\qquad \times \left[ d_Le^{b_{1,1}^{(L)}t}+(1-d_L) e^{b_{1,2}^{(L)}t}\right] , \\&\alpha _L(t)=1+\alpha '_L t, \quad L=P,O. \end{aligned} \end{aligned}$$
(B.13)

This parametrization takes into account a possibility of a non pure exponential behavior of the vertex functions for the standard pomeron and odderon [38].

The factor \(2m^2\) is inserted in amplitudes \(f,\omega , P,O\) in order to have the normalization for amplitudes and dimension of coupling constants (in milliibarns ) coinciding with those in [36].

We have added in the FMO the double pomeron and odderon cuts, PPOOPO in their usual standard form without any new parameters as well. Namely,

$$\begin{aligned}&P_1^{(2)}(z_t,t)=P_1^{(PP)}(z_t,t)+P_1^{(OO)}(z_t,t),\nonumber \\&O_1^{(2)}(z_t,t)=P_1^{(PO)}(z_t,t), \end{aligned}$$
(B.14)
$$\begin{aligned}&\begin{array}{ll} P_1^{(PP)}(z_t,t)&{}=-i\dfrac{2m^2(z_0g_1^{(P)})^2}{16\pi k s\sqrt{1-4m^2/s}} \left\{ \dfrac{d_p^2}{2B_1^p}\exp (tB_1^p/2)\right. \\ &{} +\dfrac{2d_p(1-d_p)}{B_1^p+B_2^p}\exp \left( t\dfrac{B_1^pB_2^p}{B_1^p+B_2^p} \right) \\ &{}\left. +\dfrac{(1-d_p)^2}{2B_2^p}\exp (tB_2^p/2) \right\} , \end{array} \end{aligned}$$
(B.15)
$$\begin{aligned}&\begin{array}{ll} P_1^{OO}(z_t,t)&{}=-i\dfrac{2m^2(z_0g_1^{(O)})^2}{16\pi k s\sqrt{1-4m^2/s}} \left\{ \dfrac{d_o^2}{2B_1^o}\exp (tB_1^o/2)\right. \\ &{}+\dfrac{2d_o(1-d_o)}{B_1^o+B_2^o}\exp \left( t\dfrac{B_1^oB_2^o}{B_1^o+B_2^o} \right) \\ &{}+\left. \dfrac{(1-d_o)^2}{2B_2^o}\exp (tB_2^o/2) \right\} , \end{array} \end{aligned}$$
(B.16)
$$\begin{aligned}&\begin{array}{ll} P_1^{PO}(z_t,t)&{}=\dfrac{2m^2z_t^2g_1^{(P)} g_1^{(O)}}{16\pi k s\sqrt{1-4m^2/s}}\\ &{}\times \left\{ \dfrac{d_pd_o}{B_1^p+B_1^o}\exp \left( t\dfrac{B_1^pB_1^o}{B_1^p+B_1^o}\right) \right. \\ &{}+ \dfrac{d_p(1-d_o)}{B_1^p+B_2^o}\exp \left( t\dfrac{B_1^pB_2^o}{B_1^p+B_2^o}\right) \\ &{} +\dfrac{(1-d_p)d_o}{B_2^p+B_1^o}\exp \left( t\dfrac{B_2^pB_1^o}{B_2^p+B_1^o}\right) \\ &{}+\left. \dfrac{(1-d_p)(1-d_o)}{B_2^p+B_2^o}\exp \left( t\dfrac{B_2^pB_2^o}{B_2^p+B_2^o}\right) \right\} \end{array} \end{aligned}$$
(B.17)

where \(B_k^{p,o}=b_{1,k}^{P.O}+\alpha '_{P,0}\ln (-iz_0),\quad k=1,2 , \quad b_{1,k}^{P,O}\) are the constants from single pomeron and odderon contributions.

In [38] it was noted that for a better description of the data it is advisable to add to the amplitudes the contributions that mimic some properties of ”hard“ pomeron (\(P^h\)) and odderon (\(O^h\)). We take them in the simplest form

$$\begin{aligned} \begin{aligned} P_1^{(h)}(t)&=i2m^2z_t\dfrac{g_{h,p}}{(1-t/t_{p,h})^ 4},\\ O_1^{(h)}(t)&=2m^2z_t\dfrac{g_{h,o}}{(1-t/t_{o,h})^{4}}. \end{aligned} \end{aligned}$$
(B.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bence, N., Lengyel, A., Tarics, Z. et al. Froissaron and Maximal Odderon with spin-flip in pp and \(\bar{p}p\) high energy elastic scattering. Eur. Phys. J. A 57, 265 (2021). https://doi.org/10.1140/epja/s10050-021-00563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00563-z

Navigation