Skip to main content
Log in

Theoretical study of spin observables in \(\varvec{pd}\) elastic scattering at energies \(\varvec{T_p = 800}\)\(\varvec{1000}\) MeV

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Various spin observables (analyzing powers and spin-correlation parameters) in pd elastic scattering at \(T_p = 800\)–1000 MeV are analyzed within the framework of the refined Glauber model. The theoretical model uses as input spin-dependent NN amplitudes obtained from the most recent partial-wave analysis and also takes into account the deuteron D wave and charge-exchange effects. Predictions of the refined Glauber model are compared with the existing experimental data. Reasonable agreement between the theoretical calculations and experimental data at low momentum transfers \(|t| \lesssim 0.2\) (GeV/c)\(^2\) is found for all observables considered. Moderate discrepancies found in this region are shown to be likely due to uncertainties in the input NN amplitudes. Qualitative agreement at higher momentum transfers is also found for most observables except the tensor ones with mixed x and z polarization components. Possible reasons for observed deviations of the model calculations from the data at \(|t| > 0.2\) (GeV/c)\(^2\) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study. No new experimental data have been listed.]

Notes

  1. Note the inverted sign of the amplitudes \(C_N\) and \(C'_N\) compared to that in Ref. [52], due to a different definition of the unit vector \({\hat{n}}\). Note also that the imaginary unit has been missed in the last term of Eq. (14) in Ref. [31].

  2. One should note that the above relations are valid for arbitrary q not only in the center-of-mass, but also in the Breit frame which is convenient to use for describing pd (as well as ed) scattering when going beyond the fixed-scatterer approximation. At small transferred momenta, the Breit frame almost coincides with the laboratory frame.

  3. All observables of the type \(C(\alpha ,\beta ,0,0)\) are sometimes denoted in the literature as \(A_{\alpha \beta }\) (see, e.g., [44]); in this case, spin-correlation parameters are called correlated analyzing powers, though this notation is far less common.

  4. Note that the “−” sign of \(A_{xz}\) was accidentally dropped in Eq. 4 of Refs. [31,32,33].

  5. A lot of measurements were actually performed on dp rather than pd scattering. The Madison frame for dp scattering is related to that for pd scattering by reflection of two axes \(x \rightarrow -x\), \(z \rightarrow -z\), which does not affect the definition of observables.

  6. The available data include also dp elastic scattering measurements at the incident deuteron energies which are twice the proton energies considered here.

  7. The single-scattering contribution is plotted in Figs. 1, 2, 3, 4 and 5 up to \(|t| = 1\) (GeV/c)\(^2\), though the Gaussian parametrization [31] used in calculations reproduces NN helicity amplitudes only for \(q \le 0.7\) GeV/c (\(|t| \le 0.5\) (GeV/c)\(^2\)) and may deviate from them at higher momentum transfers. Nevertheless, pd elastic scattering at \(|t|> 0.35\) (GeV/c)\(^2\) is dominated by the double-scattering term, which contains NN amplitudes in the vicinity of |t|/4, so, the results of the full calculations correspond to the correct NN input until \(|t| = 1\) (GeV/c)\(^2\) and higher.

  8. Here and further on we do not consider the region \(0 \le |t| \lesssim 0.04\) (GeV/c)\(^2\) where Coulomb effects neglected in our model calculations are significant in pd scattering.

  9. The amplitudes \(C'_N\) which enter the representation (5) of the total NN amplitudes in the laboratory frame are modified accordingly: if to denote the modified amplitudes \(C_N\) as \({\tilde{C}}_N\), then the modified amplitudes \(C'_N\) are \({\tilde{C}}'_N = C'_N+({\tilde{C}}_N-C_N)\).

References

  1. C. Wilkin, Eur. Phys. J. A 53, 114 (2017). arXiv:1611.07250

    Article  ADS  Google Scholar 

  2. C. Fritzsch et al., Phys. Lett. B 784, 277 (2018). arXiv:1805.12499

    Article  ADS  Google Scholar 

  3. D. Mchedlishvili et al., Nucl. Phys. A 977, 14 (2018). arXiv:1805.05778

    Article  ADS  Google Scholar 

  4. S. Barsov et al., Eur. Phys. J. A 54, 225 (2018). arXiv:1808.01792

    Article  ADS  Google Scholar 

  5. K. Sekiguchi et al., Phys. Rev. C 83, 061001 (2011). arXiv:1106.0180

    Article  ADS  Google Scholar 

  6. K. Sekiguchi et al., Phys. Rev. C 89, 064007 (2014)

    Article  ADS  Google Scholar 

  7. K. Sekiguchi et al., Phys. Rev. C 96, 064001 (2017)

    Article  ADS  Google Scholar 

  8. V.V. Glagolev, V.P. Ladygin, N.B. Ladygina, A.A. Terekhin, Eur. Phys. J. A 48, 182 (2012)

    Article  ADS  Google Scholar 

  9. A. Terekhin et al., EPJ Web Conf. 138, 03012 (2017)

    Article  Google Scholar 

  10. A.A. Terekhin et al., Phys. Atom. Nucl. 80, 1061 (2017)

    Article  ADS  Google Scholar 

  11. A.A. Terekhin et al., Yad. Fiz. 80, 594 (2017)

    Google Scholar 

  12. P.K. Kurilkin et al. (HADES) PoS Baldin-ISHEPP-XXI, 040 (2012)

  13. P.K. Kurilkin et al., Phys. Lett. B 715, 61 (2012). arXiv:1207.3509

    Article  ADS  Google Scholar 

  14. W. Glöckle, H. Witala, D. Huber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996)

    Article  ADS  Google Scholar 

  15. V.I. Komarov, G.E. Kosarev, G.P. Reshetnikov, O.V. Savchenko, Yad. Fiz. 16, 234 (1972)

    Google Scholar 

  16. L.S. Azhgirei et al., Phys. Atom. Nucl. 61, 432 (1998)

    ADS  Google Scholar 

  17. L.S. Azhgirei et al., Yad. Fiz. 61, 494 (1998)

    Google Scholar 

  18. V. Punjabi et al., Phys. Lett. B 350, 178 (1995)

    Article  ADS  Google Scholar 

  19. J. Arvieux et al., Nucl. Phys. A 431, 613 (1984)

    Article  ADS  Google Scholar 

  20. P. Berthet et al., J. Phys. G 8, L111 (1982)

    Article  ADS  Google Scholar 

  21. Yu.N. Uzikov, Phys. Part. Nucl. 29, 583 (1998)

  22. Yu.N. Uzikov, Fiz. Elem. Chast. Atom. Yadra 29, 1405 (1998)

  23. R.J. Glauber, Phys. Rev. 100, 242 (1955)

    Article  ADS  Google Scholar 

  24. V. Franco, R.J. Glauber, Phys. Rev. 142, 1195 (1966)

    Article  ADS  Google Scholar 

  25. G. Alberi, M. Bleszynski, T. Jaroszewicz, Ann. Phys. 142, 299 (1982)

    Article  ADS  Google Scholar 

  26. E. Bleszynski, M. Bleszynski, T. Jaroszewicz, AIP Conf. Proc. 150, 1208 (1986)

    Article  ADS  Google Scholar 

  27. E. Bleszynski, M. Bleszynski, T. Jaroszewicz, Phys. Rev. Lett. 59, 423 (1987)

    Article  ADS  Google Scholar 

  28. N.B. Ladygina, Phys. Atom. Nucl. 71, 2039 (2008). arXiv:0705.3149

    Article  ADS  Google Scholar 

  29. N.B. Ladygina, Eur. Phys. J. A 42, 91 (2009). arXiv:0906.1910

    Article  ADS  Google Scholar 

  30. D.R. Harrington, Phys. Rev. 184, 1745 (1969)

    Article  ADS  Google Scholar 

  31. M.N. Platonova, V.I. Kukulin, Phys. Rev. C 81, 014004 (2010). [Erratum: Phys. Rev. C 94, 069902(E) (2016)]. arXiv:1612.08694

  32. M.N. Platonova, V.I. Kukulin, Phys. Atom. Nucl. 73, 86 (2010)

    Article  ADS  Google Scholar 

  33. M.N. Platonova, V.I. Kukulin, Yad. Fiz. 73, 90 (2010)

    Google Scholar 

  34. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 76, 025209 (2007). arXiv:0706.2195

    Article  ADS  Google Scholar 

  35. All SAID PWA solutions and \(NN\) elastic scattering database. http://gwdac.phys.gwu.edu

  36. R. Machleidt, Phys. Rev. C 63, 024001 (2001). arXiv:nucl-th/0006014

    Article  ADS  Google Scholar 

  37. C. Elster, T. Lin, W. Glöckle, S. Jeschonnek, Phys. Rev. C 78, 034002 (2008)

    Article  ADS  Google Scholar 

  38. A.A. Temerbayev, YuN Uzikov, Phys. Atom. Nucl. 78, 35 (2015)

    Article  ADS  Google Scholar 

  39. A.A. Temerbayev, YuN Uzikov, Yad. Fiz. 78, 38 (2015)

    Google Scholar 

  40. Yu.N. Uzikov, J. Haidenbauer, Phys. Rev. C 87, 054003 (2013)

  41. R.L. Workman, W.J. Briscoe, I.I. Strakovsky, Phys. Rev. C 94, 065203 (2016). arXiv:1609.01741

    Article  ADS  Google Scholar 

  42. E. Winkelmann et al., Phys. Rev. C 21, 2535 (1980)

    Article  ADS  Google Scholar 

  43. F. Irom, G.J. Igo, J.B. McClelland, C.A. Whitten, M. Bleszynski, Phys. Rev. C 28, 2380 (1983)

    Article  ADS  Google Scholar 

  44. D.L. Adams et al., Nucl. Phys. A 480, 530 (1988)

    Article  ADS  Google Scholar 

  45. A. Rahbar et al., Phys. Lett. B 194, 338 (1987)

    Article  ADS  Google Scholar 

  46. M. Haji-Saied et al., Phys. Rev. C 36, 2010 (1987)

    Article  ADS  Google Scholar 

  47. V. Ghazikhanian et al., Phys. Rev. C 43, 1532 (1991)

    Article  ADS  Google Scholar 

  48. G. Igo et al., Phys. Rev. C 38, 2777 (1988)

    Article  ADS  Google Scholar 

  49. E. Guelmez et al., Phys. Rev. C 45, 22 (1992)

    Article  ADS  Google Scholar 

  50. T.H. Sun et al., Phys. Rev. C 31, 515 (1985)

    Article  ADS  Google Scholar 

  51. I. Savin et al., Eur. Phys. J. A 52, 215 (2016)

    Article  ADS  Google Scholar 

  52. C. Sorensen, Phys. Rev. D 19, 1444 (1979)

    Article  ADS  Google Scholar 

  53. G.W. Bennett et al., Phys. Rev. Lett. 19, 387 (1967)

    Article  ADS  Google Scholar 

  54. N. Dalkhazhav et al., Sov. J. Nucl. Phys. 8, 196 (1969)

    Google Scholar 

  55. N. Dalkhazhav et al., Yad. Fiz. 8, 342 (1968)

    Google Scholar 

  56. G.N. Velichko et al., Sov. J. Nucl. Phys. 47, 755 (1988)

    Google Scholar 

  57. G.N. Velichko et al., Yad. Fiz. 47, 1185 (1988)

    Google Scholar 

  58. E. Guelmez et al., Phys. Rev. C 43, 2067 (1991)

    Article  ADS  Google Scholar 

  59. Z. Bagdasarian et al., Phys. Lett. B 739, 152 (2014). arXiv:1409.8445

    Article  ADS  Google Scholar 

  60. Yu. Uzikov, C. Wilkin, Phys. Lett. B 793, 224 (2019). arXiv:1902.03596

    Article  ADS  Google Scholar 

  61. C. Wilkin, private communication

  62. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995). arXiv:nucl-th/9408016

    Article  ADS  Google Scholar 

  63. V.I. Kukulin, V.N. Pomerantsev, M. Kaskulov, A. Faessler, J. Phys. G 30, 287 (2004). arXiv:nucl-th/0308059

    Article  ADS  Google Scholar 

  64. M.N. Platonova, V.I. Kukulin, J. Phys. Conf. Ser. 381, 012110 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate fruitful discussions with Colin Wilkin, who carefully read the initial version of the manuscript and made valuable comments and suggestions. The work was supported by the Russian Foundation for Basic Research, Grants Nos. 19-02-00014 and 19-02-00011, and the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria N. Platonova.

Additional information

Communicated by Pierre Capel.

Appendix A: Transformation of polarization observables in \(\varvec{pd}\) elastic scattering to the Madison frame

Appendix A: Transformation of polarization observables in \(\varvec{pd}\) elastic scattering to the Madison frame

In this appendix we give the explicit formulas which should be applied to transform the pd elastic spin observables from the \(xyz = \{{\hat{q}}{\hat{n}}{\hat{k}}\}\) frame used in deriving the formalism of the refined Glauber model to the \(xyz = \{{\hat{S}}{\hat{N}}{\hat{L}}\}\) (Madison) frame conventionally used in experiments (see definitions in Sect. 2).

We have the following expressions for the analyzing powers:

$$\begin{aligned} A_y^{p\,(\mathrm{Mad})}= & {} -{A_y}^p, \quad A_y^{d\,(\mathrm{Mad})} = -{A_y}^d, \nonumber \\ A_{yy}^{(\mathrm{Mad})}= & {} A_{yy}, \nonumber \\ A_{xx}^{(\mathrm{Mad})}= & {} \frac{1}{2}(1 + \mathrm{cos}\theta )\,A_{xx} + \frac{1}{2}(1 - \mathrm{cos}\theta )\,A_{zz} \nonumber \\&- \mathrm{sin}\theta \,A_{xz}, \nonumber \\ A_{xz}^{(\mathrm{Mad})}= & {} -\mathrm{cos}\theta \,A_{xz} - \frac{1}{2}\mathrm{sin}\theta \,(A_{xx} - A_{zz}), \nonumber \\ A_{zz}^{(\mathrm{Mad})}= & {} -A_{yy}^{(\mathrm{Mad})} - A_{xx}^{(\mathrm{Mad})}, \end{aligned}$$
(A.1)

and for the spin-correlation parameters:

$$\begin{aligned} C_{y,y}^{(\mathrm{Mad})}= & {} C_{y,y}, \nonumber \\ C_{x,x}^{(\mathrm{Mad})}= & {} \frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{x,x} + \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{z,z} \nonumber \\&- \frac{1}{2}\mathrm{sin}\theta \,(C_{z,x} + C_{x,z}), \nonumber \\ C_{z,x}^{(\mathrm{Mad})}= & {} -\frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{z,x} + \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{x,z} \nonumber \\&- \frac{1}{2}\mathrm{sin}\theta \,(C_{x,x} - C_{z,z}), \nonumber \\ C_{x,z}^{(\mathrm{Mad})}= & {} -\frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{x,z} + \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{z,x} \nonumber \\&- \frac{1}{2}\mathrm{sin}\theta \,(C_{x,x} - C_{z,z}), \nonumber \\ C_{z,z}^{(\mathrm{Mad})}= & {} \frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{z,z} + \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{x,x} \nonumber \\&+ \frac{1}{2}\mathrm{sin}\theta \,(C_{x,z} + C_{z,x}), \nonumber \\ C_{y,yy}^{(\mathrm{Mad})}= & {} -C_{y,yy}, \nonumber \\ C_{y,xx}^{(\mathrm{Mad})}= & {} -\frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{y,xx} - \frac{1}{2}(1 - \mathrm{cos}\theta )\,C_{y,zz} \nonumber \\&+ \mathrm{sin}\theta \,C_{y,xz}, \nonumber \\ C_{y,xz}^{(\mathrm{Mad})}= & {} \mathrm{cos}\theta \,C_{y,xz} + \frac{1}{2}\mathrm{sin}\theta \,(C_{y,xx} - C_{y,zz}), \nonumber \\ C_{y,zz}^{(\mathrm{Mad})}= & {} -C_{y,yy}^{(\mathrm{Mad})} - C_{y,xx}^{(\mathrm{Mad})}, \nonumber \\ C_{x,xy}^{(\mathrm{Mad})}= & {} -\frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{x,xy} - \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{z,zy} \nonumber \\&+ \frac{1}{2}\mathrm{sin}\theta \,(C_{z,xy} + C_{x,zy}), \nonumber \\ C_{z,xy}^{(\mathrm{Mad})}= & {} \frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{z,xy} - \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{x,zy} \nonumber \\&+ \frac{1}{2}\mathrm{sin}\theta \,(C_{x,xy} - C_{z,zy}), \nonumber \\ C_{x,zy}^{(\mathrm{Mad})}= & {} \frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{x,zy} - \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{z,xy} \nonumber \\&+ \frac{1}{2}\mathrm{sin}\theta \,(C_{x,xy} - C_{z,zy}), \nonumber \\ C_{z,zy}^{(\mathrm{Mad})}= & {} -\frac{1}{2}(1 + \mathrm{cos}\theta )\,C_{z,zy} - \frac{1}{2}(1-\mathrm{cos}\theta )\,C_{x,xy} \nonumber \\&- \frac{1}{2}\mathrm{sin}\theta \,(C_{z,xy} + C_{x,zy}). \end{aligned}$$
(A.2)

We should note here that we did not transform the analyzing powers to the Madison frame in our previous work [31,32,33]. However, when compared the theoretical predictions to experimental data, we inverted the sign of vector analyzing powers \(A_y^p\) and \(A_y^d\). We also considered tensor analyzing powers \(A_{yy}\) (which is the same in both coordinate frames) and \(A_{xx}\) (which is changed only slightly by Eq. (A.1) in the forward hemisphere), so that there was no significant error in comparing these observables to those measured in the Madison frame. The only analyzing power that changes its behavior substantially under the transformation (A.1) is \(A_{xz}\) (due to an admixture of large \(A_{xx}\)), which was not considered in our previous works.

The expressions for some of the above observables in terms of 18 pd amplitudes derived directly in the Madison frame and the relations of these amplitudes to our ones \(A_1\)\(A_{12}\) are to be found in Refs. [38, 39].

We also give here an alternative representation of the pd elastic scattering amplitude in the \(\{{\hat{q}}{\hat{n}}{\hat{k}}\}\) frame, which has a more symmetric form than Eq. (4):

$$\begin{aligned} M[\mathbf{p},\mathbf{q}; {\varvec{\sigma }}, \mathbf{S}]= & {} \bigl (M_1 + M_2 \,{\varvec{\sigma }}\cdot {\hat{n}}\bigr )(1 - (\mathbf{S}\cdot {\hat{q}})^2) \nonumber \\&+ \bigl (M_3 + M_4 \,{\varvec{\sigma }}\cdot {\hat{n}}\bigr )(1 - (\mathbf{S}\cdot {\hat{n}})^2) \nonumber \\&+ \bigl (M_5 + M_6 \,{\varvec{\sigma }}\cdot {\hat{n}}\bigr )(1 - (\mathbf{S}\cdot {\hat{k}})^2) \nonumber \\&+ iM_7\,{\varvec{\sigma }}\cdot {\hat{k}}\,\mathbf{S}\cdot {\hat{k}} \nonumber \\&- M_{8}\,{\varvec{\sigma }}\cdot {\hat{q}}(\mathbf{S}\cdot {\hat{q}}\,\mathbf{S}\cdot {\hat{n}} + \mathbf{S}\cdot {\hat{n}}\,\mathbf{S}\cdot {\hat{q}}) \nonumber \\&- i\bigl (M_9 + M_{10}\,{\varvec{\sigma }}\cdot {\hat{n}}\bigr )\mathbf{S}\cdot {\hat{n}} + iM_{11} \,{\varvec{\sigma }}\cdot {\hat{q}}\,\mathbf{S}\cdot {\hat{q}} \nonumber \\&- M_{12} \,{\varvec{\sigma }}\cdot {\hat{k}}(\mathbf{S} \cdot {\hat{k}}\,\mathbf{S}\cdot {\hat{n}} + \mathbf{S}\cdot {\hat{n}}\,\mathbf{S}\cdot {\hat{k}}). \end{aligned}$$
(A.3)

The set of invariant amplitudes \(M_1\)\(M_{12}\) (multiplied by a standard normalization factor \(8p\sqrt{\pi s}\)) was used in, e.g., Refs. [21, 22] (note, however, that the direction of the unit vector \({\hat{n}}\) was chosen there opposite to ours). These amplitudes are related to our ones, \(A_1\)\(A_{12}\), as follows:

$$\begin{aligned} A_1= & {} M_1 + M_3 - M_5, \quad A_2 = M_2 + M_4 - M_6, \nonumber \\ A_3= & {} M_5 - M_1, \quad A_4 = M_6 - M_2, \nonumber \\ A_5= & {} M_5 - M_3, \quad A_6 = M_6 - M_4, \nonumber \\ A_7= & {} iM_7, \quad A_8 = -M_8, \quad A_9 = -iM_9, \nonumber \\ A_{10}= & {} -iM_{10}, \quad A_{11} = iM_{11}, \quad A_{12} = -M_{12}. \end{aligned}$$
(A.4)

The pd elastic observables expressed in terms of the amplitudes \(M_1\)\(M_{12}\) look simpler than those given by Eq. (4) of Ref. [31] and Eq. (8) of the present paper. In particular, interference between different amplitudes vanishes in the expression for the differential cross section. On the other hand, such a representation is less transparent in the sense that there are three large amplitudes \(M_1\), \(M_3\) and \(M_5\) instead of only one dominant amplitude \(A_1\) at low momentum transfers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platonova, M.N., Kukulin, V.I. Theoretical study of spin observables in \(\varvec{pd}\) elastic scattering at energies \(\varvec{T_p = 800}\)\(\varvec{1000}\) MeV. Eur. Phys. J. A 56, 132 (2020). https://doi.org/10.1140/epja/s10050-020-00120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00120-0

Navigation