Skip to main content
Log in

A review of quarkonia under strong magnetic fields

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We review the properties of quarkonia under strong magnetic fields. The main phenomena are (i) mixing between different spin eigenstates, (ii) quark Landau levels and deformation of wave function, (iii) modification of \(\bar{Q}Q\) potential, and (iv) the motional Stark effect. For theoretical approaches, we review (i) constituent quark models, (ii) effective Lagrangians, (iii) QCD sum rules, and (iv) holographic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]

Notes

  1. Strictly speaking, the detail of the potential, such as the Coulomb potential, should be also different.

  2. Note that even in the PB limit, the tensor coupling exists and mixes \(L_z\) and \(S_z\), so that these are not conserved.

  3. Note that this configuration contains partial waves such as \(L=1,3,5,\ldots \). Nevertheless, the factorization of Eq. (C.1) is valid because all the partial waves with a same \(L_z\) always share the same factor of \(e^{\pm i\phi }\sin \theta \propto Y_{1\,\pm \,1}\) or \(\cos \theta \propto Y_{10}\).

References

  1. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011). https://doi.org/10.1140/epjc/s10052-010-1534-9. arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  2. A. Andronic et al., Eur. Phys. J. C 76, 107 (2016). https://doi.org/10.1140/epjc/s10052-015-3819-5. arXiv:1506.03981 [nucl-ex]

    Article  ADS  Google Scholar 

  3. J. Rafelski, B. Müller, Phys. Rev. Lett. 36, 517 (1976). https://doi.org/10.1103/PhysRevLett.36.517

    Article  ADS  Google Scholar 

  4. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298. arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  5. V. Skokov, A.Yu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570. arXiv:0907.1396 [nucl-th]

  6. V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin, Phys. Rev. C 83, 054911 (2011). https://doi.org/10.1103/PhysRevC.83.054911. arXiv:1103.4239 [nucl-th]

  7. L. Ou, B.-A. Li, Phys. Rev. C 84, 064605 (2011). arXiv:1107.3192 [nucl-th]. https://doi.org/10.1103/PhysRevC.84.064605

  8. A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012). https://doi.org/10.1016/j.physletb.2012.02.065. arXiv:1111.1949 [hep-ph]

    Article  ADS  Google Scholar 

  9. W.-T. Deng, X.-G. Huang, Phys. Rev. C 85, 044907 (2012). arXiv:1201.5108 [nucl-th]. https://doi.org/10.1103/PhysRevC.85.044907

  10. J. Bloczynski, X.-G. Huang, X. Zhang, J. Liao, Phys. Lett. B 718, 1529 (2013). https://doi.org/10.1016/j.physletb.2012.12.030. arXiv:1209.6594 [nucl-th]

    Article  ADS  Google Scholar 

  11. J. Bloczynski, X.-G. Huang, X. Zhang, J. Liao, Nucl. Phys. A 939, 85 (2015). https://doi.org/10.1016/j.nuclphysa.2015.03.012. arXiv:1311.5451 [nucl-th]

    Article  ADS  Google Scholar 

  12. W.-T. Deng, X.-G. Huang, Phys. Lett. B 742, 296 (2015). https://doi.org/10.1016/j.physletb.2015.01.050. arXiv:1411.2733 [nucl-th]

    Article  ADS  Google Scholar 

  13. X.-G. Huang, Rep. Prog. Phys. 79, 076302 (2016). arXiv:1509.04073 [nucl-th]. https://doi.org/10.1088/0034-4885/79/7/076302

  14. X.-L. Zhao, Y.-G. Ma, G.-L. Ma, Phys. Rev. C 97, 024910 (2018). arXiv:1709.05962 [hep-ph]. https://doi.org/10.1103/PhysRevC.97.024910

  15. X.-L. Zhao, G.-L. Ma, Y.-G. Ma, Phys. Rev. C 99, 034903 (2019). arXiv:1901.04151 [hep-ph]. https://doi.org/10.1103/PhysRevC.99.034903

  16. Y.-L. Cheng, S. Zhang, Y.-G. Ma, J.-H. Chen, C. Zhong, Phys. Rev. C 99, 054906 (2019). arXiv:1909.03160 [nucl-th]. https://doi.org/10.1103/PhysRevC.99.054906

  17. J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013). arXiv:1309.3003 [hep-ph]. https://doi.org/10.1103/PhysRevD.88.105017

  18. C. Bonati, M. D’Elia, A. Rucci, Phys. Rev. D 92, 054014 (2015). arXiv:1506.07890 [hep-ph]. https://doi.org/10.1103/PhysRevD.92.054014

  19. K. Suzuki, T. Yoshida, Phys. Rev. D 93, 051502 (2016). arXiv:1601.02178 [hep-ph]. https://doi.org/10.1103/PhysRevD.93.051502

  20. T. Yoshida, K. Suzuki, Phys. Rev. D 94, 074043 (2016). arXiv:1607.04935 [hep-ph]. https://doi.org/10.1103/PhysRevD.94.074043

  21. S. Iwasaki, M. Oka, K. Suzuki, T. Yoshida, Phys. Lett. B 790, 71 (2019). https://doi.org/10.1016/j.physletb.2018.10.024. arXiv:1802.04971 [hep-ph]

    Article  ADS  Google Scholar 

  22. S. Cho, K. Hattori, S.H. Lee, K. Morita, S. Ozaki, Phys. Rev. Lett. 113, 172301 (2014). arXiv:1406.4586 [hep-ph]. https://doi.org/10.1103/PhysRevLett.113.172301

  23. S. Cho, K. Hattori, S.H. Lee, K. Morita, S. Ozaki, Phys. Rev. D 91, 045025 (2015). arXiv:1411.7675 [hep-ph]. https://doi.org/10.1103/PhysRevD.91.045025

  24. A. Mishra, S.P. Misra, Phys. Rev. C 102, 045204 (2020). arXiv:2004.01007 [nucl-th]. https://doi.org/10.1103/PhysRevC.102.045204

  25. D.-L. Yang, B. Müller, J. Phys. G 39, 015007 (2012). arXiv:1108.2525 [hep-ph]. https://doi.org/10.1088/0954-3899/39/1/015007

  26. X. Guo, S. Shi, N. Xu, Z. Xu, P. Zhuang, Phys. Lett. B 751, 215 (2015). https://doi.org/10.1016/j.physletb.2015.10.038. arXiv:1502.04407 [hep-ph]

    Article  ADS  Google Scholar 

  27. K. Suzuki, S.H. Lee, Phys. Rev. C 96, 035203 (2017). arXiv:1610.09853 [hep-ph]. https://doi.org/10.1103/PhysRevC.96.035203

  28. N. Dutta, S. Mazumder, Eur. Phys. J. C 78, 525 (2018). https://doi.org/10.1140/epjc/s10052-018-6000-0. arXiv:1704.04094 [nucl-th]

    Article  ADS  Google Scholar 

  29. J. Hoelck, G. Wolschin, Eur. Phys. J. A 53, 241 (2017). https://doi.org/10.1140/epja/i2017-12441-0. arXiv:1712.06871 [hep-ph]

    Article  ADS  Google Scholar 

  30. S. Iwasaki, K. Suzuki, Phys. Rev. D 98, 054017 (2018). arXiv:1805.09787 [hep-ph]. https://doi.org/10.1103/PhysRevD.98.054017

  31. S. Chen, J. Zhao, P. Zhuang, Phys. Rev. C 103, L031902 (2021). https://doi.org/10.1103/PhysRevC.103.L031902. arXiv:2005.08473 [nucl-th]

    Article  ADS  Google Scholar 

  32. S. Iwasaki, D. Jido, M. Oka, K. Suzuki, Phys. Lett. B (to be published) (2021). arXiv:2104.13989 [hep-ph]

  33. S. Iwasaki, The charmonium mixing as a probe of transient magnetic fields, Ph.D. thesis, Tokyo Institute of Technology (2021)

  34. V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 66, 045006 (2002). arXiv:hep-ph/0205348 [hep-ph]. https://doi.org/10.1103/PhysRevD.66.045006

  35. M.N. Chernodub, Mod. Phys. Lett. A 29, 1450162 (2014). https://doi.org/10.1142/S0217732314501624. arXiv:1001.0570 [hep-ph]

    Article  ADS  Google Scholar 

  36. M.A. Andreichikov, V.D. Orlovsky, Yu.A. Simonov, Phys. Rev. Lett. 110, 162002 (2013). arXiv:1211.6568 [hep-ph]. https://doi.org/10.1103/PhysRevLett.110.162002

  37. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Phys. Rev. D 89, 114502 (2014). arXiv:1403.6094 [hep-lat]. https://doi.org/10.1103/PhysRevD.89.114502

  38. R. Rougemont, R. Critelli, J. Noronha, Phys. Rev. D 91, 066001 (2015). arXiv:1409.0556 [hep-th]. https://doi.org/10.1103/PhysRevD.91.066001

  39. Yu.A. Simonov, M.A. Trusov, Phys. Lett. B 747, 48 (2015). https://doi.org/10.1016/j.physletb.2015.05.032. arXiv:1503.08531 [hep-ph]

  40. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Phys. Rev. D 94, 094007 (2016). arXiv:1607.08160 [hep-lat]. https://doi.org/10.1103/PhysRevD.94.094007

  41. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Phys. Rev. D 95, 074515 (2017). arXiv:1703.00842 [hep-lat]. https://doi.org/10.1103/PhysRevD.95.074515

  42. M. Hasan, B. Chatterjee, B.K. Patra, Eur. Phys. J. C 77, 767 (2017). https://doi.org/10.1140/epjc/s10052-017-5346-z. arXiv:1703.10508 [hep-ph]

    Article  ADS  Google Scholar 

  43. B. Singh, L. Thakur, H. Mishra, Phys. Rev. D 97 (2018). https://doi.org/10.1103/PhysRevD.97.096011arXiv:1711.03071 [hep-ph]

  44. M. Hasan, B.K. Patra, B. Chatterjee, P. Bagchi, Nucl. Phys. A 995 (2020). https://doi.org/10.1016/j.nuclphysa.2019.121688arXiv:1802.06874 [hep-ph]

  45. P. Bagchi, N. Dutta, B. Chatterjee, S. Priyam Adhya (2018). arXiv:1805.04082 [nucl-th]

  46. C. Bonati, S. Calì, M. D’Elia, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, Phys. Rev. D 98, 054501 (2018). arXiv:1807.01673 [hep-lat]. https://doi.org/10.1103/PhysRevD.98.054501

  47. S.A. Khan, B.K. Patra, M. Hasan (2020). arXiv:2004.08868 [hep-ph]

  48. M. Hasan, B.K. Patra, Phys. Rev. D 102, 036020 (2020). arXiv:2004.12857 [hep-ph]. https://doi.org/10.1103/PhysRevD.102.036020

  49. J. Zhou, X. Chen, Y.-Q. Zhao, J. Ping, Phys. Rev. D 102, 086020 (2020). arXiv:2006.09062 [hep-ph]. https://doi.org/10.1103/PhysRevD.102.086020

  50. K. Marasinghe, K. Tuchin, Phys. Rev. C 84, 044908 (2011). arXiv:1103.1329 [hep-ph]. https://doi.org/10.1103/PhysRevC.84.044908

  51. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013). arXiv:1301.0099 [hep-ph]. https://doi.org/10.1155/2013/490495

  52. K. Tuchin, Phys. Lett. B 705, 482 (2011). https://doi.org/10.1016/j.physletb.2011.10.047. arXiv:1105.5360 [nucl-th]

    Article  ADS  Google Scholar 

  53. C.S. Machado, F.S. Navarra, E.G. de Oliveira, J. Noronha, M. Strickland, Phys. Rev. D 88, 034009 (2013). arXiv:1305.3308 [hep-ph]. https://doi.org/10.1103/PhysRevD.88.034009

  54. D. Dudal, T.G. Mertens, Phys. Rev. D 91, 086002 (2015). arXiv:1410.3297 [hep-th]. https://doi.org/10.1103/PhysRevD.91.086002

  55. A.V. Sadofyev, Y. Yin, JHEP 01, 052 (2016). https://doi.org/10.1007/JHEP01(2016)052. arXiv:1510.06760 [hep-th]

    Article  ADS  Google Scholar 

  56. N.R. Braga, L.F. Ferreira, Phys. Lett. B 783, 186 (2018). https://doi.org/10.1016/j.physletb.2018.06.053. arXiv:1802.02084 [hep-ph]

    Article  ADS  Google Scholar 

  57. N.R. Braga, L.F. Ferreira, Phys. Lett. B 795, 462 (2019). https://doi.org/10.1016/j.physletb.2019.06.050. arXiv:1905.11309 [hep-ph]

    Article  ADS  Google Scholar 

  58. N.R. Braga, R. da Mata, Phys. Lett. B 811, 135918 (2020). arXiv:2008.10457 [hep-th]. https://doi.org/10.1016/j.physletb.2020.135918

  59. K. Hattori, X.-G. Huang, Nucl. Sci. Technol. 28, 26 (2017). https://doi.org/10.1007/s41365-016-0178-3. arXiv:1609.00747 [nucl-th]

    Article  Google Scholar 

  60. J. Zhao, K. Zhou, S. Chen, P. Zhuang, Prog. Part. Nucl. Phys. 114, 103801 (2020). arXiv:2005.08277 [nucl-th]. https://doi.org/10.1016/j.ppnp.2020.103801

  61. F. Paschen, E. Back, Physica 1, 261 (1921)

    Google Scholar 

  62. K. Hattori, A. Yamamoto, PTEP 2019, 043B04 (2019). arXiv:1901.10182 [hep-lat]. https://doi.org/10.1093/ptep/ptz023

  63. W.E. Lamb, Phys. Rev. 85, 259 (1952). https://doi.org/10.1103/PhysRev.85.259

    Article  ADS  Google Scholar 

  64. M.H. Johnson, B.A. Lippmann, Phys. Rev. 76, 828 (1949). https://doi.org/10.1103/PhysRev.76.828

    Article  ADS  MathSciNet  Google Scholar 

  65. L.P. Gor’kov, I.E. Dzyaloshinskii, Sov. Phys. JETP 63, 449 (1968)

    ADS  Google Scholar 

  66. B.P. Carter, J. Math. Phys. 10, 788 (1969). https://doi.org/10.1063/1.1664906

    Article  ADS  Google Scholar 

  67. J.E. Avron, I.W. Herbst, B. Simon, Ann. Phys. (N.Y.) 114, 431 (1978). https://doi.org/10.1016/0003-4916(78)90276-2

  68. E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, T.-M. Yan, Phys. Rev. Lett.  34, 369 (1975) [Erratum: Phys. Rev. Lett. 36, 1276 (1976)]. https://doi.org/10.1103/PhysRevLett.34.369. https://doi.org/10.1103/PhysRevLett.36.1276

  69. Yu.A. Simonov, B.O. Kerbikov, M.A. Andreichikov (2012). arXiv:1210.0227 [hep-ph]

  70. Yu.A. Simonov, Phys. Rev. D 88, 053004 (2013). arXiv:1304.0365 [hep-ph]. https://doi.org/10.1103/PhysRevD.88.053004

  71. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, Yu.A. Simonov, Phys. Rev. D 87, 094029 (2013). arXiv:1304.2533 [hep-ph]. https://doi.org/10.1103/PhysRevD.87.094029

  72. V.D. Orlovsky, Yu.A. Simonov, JHEP 09, 136 (2013). https://doi.org/10.1007/JHEP09(2013)136. arXiv:1306.2232 [hep-ph]

  73. H. Taya, Phys. Rev. D 92, 014038 (2015). arXiv:1412.6877 [hep-ph]. https://doi.org/10.1103/PhysRevD.92.014038

  74. M.A. Andreichikov, B.O. Kerbikov, E.V. Luschevskaya, Yu.A. Simonov, O.E. Solovjeva, JHEP 05, 007 (2017). https://doi.org/10.1007/JHEP05(2017)007. arXiv:1610.06887 [hep-ph]

  75. T. Kojo (2021). arXiv:2104.00376 [hep-ph]

  76. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, Yu.A. Simonov, Phys. Rev. D 89, 074033 (2014). arXiv:1312.2212 [hep-ph]. https://doi.org/10.1103/PhysRevD.89.074033

  77. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979). https://doi.org/10.1016/0550-3213(79)90022-1

    Article  ADS  Google Scholar 

  78. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979). https://doi.org/10.1016/0550-3213(79)90023-3

    Article  ADS  Google Scholar 

  79. P. Gubler, K. Hattori, S.H. Lee, M. Oka, S. Ozaki, K. Suzuki, Phys. Rev. D 93, 054026 (2016). arXiv:1512.08864 [hep-ph]. https://doi.org/10.1103/PhysRevD.93.054026

  80. C.S. Machado, R.D. Matheus, S.I. Finazzo, J. Noronha, Phys. Rev. D 89, 074027 (2014). arXiv:1307.1797 [hep-ph]. https://doi.org/10.1103/PhysRevD.89.074027

  81. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]. arXiv:hep-th/9711200. https://doi.org/10.1023/A:1026654312961. https://doi.org/10.4310/ATMP.1998.v2.n2.a1

  82. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006). arXiv:hep-ph/0602229. https://doi.org/10.1103/PhysRevD.74.015005

  83. D. Dudal, T.G. Mertens, Phys. Rev. D 97, 054035 (2018). arXiv:1802.02805 [hep-th]. https://doi.org/10.1103/PhysRevD.97.054035

  84. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986). https://doi.org/10.1016/0370-2693(86)91404-8

    Article  ADS  Google Scholar 

  85. T. Hashimoto, K. Hirose, T. Kanki, O. Miyamura, Phys. Rev. Lett. 57, 2123 (1986). https://doi.org/10.1103/PhysRevLett.57.2123

    Article  ADS  Google Scholar 

  86. C. Gerschel, J. Hüfner, Ann. Rev. Nucl. Part. Sci. 49, 255 (1999). arXiv:hep-ph/9802245. https://doi.org/10.1146/annurev.nucl.49.1.255

  87. R. Vogt, Phys. Rep. 310, 197 (1999). https://doi.org/10.1016/S0370-1573(98)00074-X

    Article  ADS  Google Scholar 

  88. H. Satz, J. Phys. G 32, R25 (2006). https://doi.org/10.1088/0954-3899/32/3/R01. arXiv:hep-ph/0512217

    Article  ADS  Google Scholar 

  89. R. Rapp, D. Blaschke, P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010). https://doi.org/10.1016/j.ppnp.2010.07.002. arXiv:0807.2470 [hep-ph]

    Article  ADS  Google Scholar 

  90. A. Mócsy, P. Petreczky, M. Strickland, Int. J. Mod. Phys. A 28, 1340012 (2013). https://doi.org/10.1142/S0217751X13400125. arXiv:1302.2180 [hep-ph]

    Article  ADS  Google Scholar 

  91. A. Rothkopf, Phys. Rep. 858, 1 (2020). https://doi.org/10.1016/j.physrep.2020.02.006. arXiv:1912.02253 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  92. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 03, 054 (2007). https://doi.org/10.1088/1126-6708/2007/03/054. arXiv:hep-ph/0611300

    Article  ADS  Google Scholar 

  93. N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008). arXiv:0804.0993 [hep-ph]. https://doi.org/10.1103/PhysRevD.78.014017

  94. N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 12, 116 (2011). https://doi.org/10.1007/JHEP12(2011)116. arXiv:1109.5826 [hep-ph]

    Article  ADS  Google Scholar 

  95. A. Hosaka, T. Hyodo, K. Sudoh, Y. Yamaguchi, S. Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017). https://doi.org/10.1016/j.ppnp.2017.04.003. arXiv:1606.08685 [hep-ph]

    Article  ADS  Google Scholar 

  96. F. Klingl, S. Kim, S.H. Lee, P. Morath, W. Weise, Phys. Rev. Lett. 82, 3396 (1999) [Erratum: Phys. Rev. Lett. 83, 4224 (1999)]. arXiv:nucl-th/9811070. https://doi.org/10.1103/PhysRevLett.82.3396. https://doi.org/10.1103/PhysRevLett.83.4224

  97. S. Kim, S.H. Lee, Nucl. Phys. A 679, 517 (2001). https://doi.org/10.1016/S0375-9474(00)00350-X. arXiv:nucl-th/0002002

    Article  ADS  Google Scholar 

  98. A. Jahan C.S., N. Dhale, S. Reddy P., S. Kesarwani A. Mishra, Phys. Rev. C 98, 065202 (2018). arXiv:1803.04322 [nucl-th]. https://doi.org/10.1103/PhysRevC.98.065202

  99. A. Jahan C.S., S. Kesarwani, S. Reddy P., N. Dhale, A. Mishra (2018). arXiv:1807.07572 [nucl-th]

  100. A. Jahan C.S., A. Mishra (2021). arXiv:2101.08568 [hep-ph]

  101. R. Kumar, A. Kumar, Eur. Phys. J. C 79, 403 (2019). https://doi.org/10.1140/epjc/s10052-019-6913-2. arXiv:1810.09185 [hep-ph]

    Article  ADS  Google Scholar 

  102. A. Mishra, P. Parui, A. Kumar, S. De (2018). arXiv:1811.04622 [nucl-th]

  103. R. Kumar, A. Kumar, Chin. Phys. C 43, 124109 (2019). arXiv:1904.05128 [hep-ph]. https://doi.org/10.1088/1674-1137/43/12/124109

  104. P. Parui, S. De, A. Kumar, A. Mishra (2021). arXiv:2104.05471 [hep-ph]

  105. A. Mishra, A. Jahan C.S., S. Kesarwani, H. Raval, S. Kumar, J. Meena, Eur. Phys. J. A 55, 99 (2019). arXiv:1812.07397 [nucl-th]. https://doi.org/10.1140/epja/i2019-12778-2

  106. A. Mishra, S.P. Misra (2019). arXiv:1901.06259 [nucl-th]

  107. A. Mishra, S.P. Misra (2019). arXiv:1907.11380 [nucl-th]

  108. R. Kumar, A. Kumar, Phys. Rev. C 101, 015202 (2020). arXiv:1908.09172 [hep-ph]. https://doi.org/10.1103/PhysRevC.101.015202

  109. L. Adamczyk, et al. (STAR Collaboration), Nature 548, 62 (2017). arXiv:1701.06657 [nucl-ex]. https://doi.org/10.1038/nature23004

  110. J. Adam, et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018). arXiv:1805.04400 [nucl-ex]. https://doi.org/10.1103/PhysRevC.98.014910

  111. A. Mishra, S.P. Misra (2020). arXiv:2005.00354 [hep-ph]

  112. S.P. Klevansky, R.H. Lemmer, Phys. Rev. D 39, 3478 (1989). https://doi.org/10.1103/PhysRevD.39.3478

    Article  ADS  Google Scholar 

  113. H. Suganuma, T. Tatsumi, Ann. Phys. 208, 470 (1991). https://doi.org/10.1016/0003-4916(91)90304-Q

    Article  ADS  Google Scholar 

  114. K.G. Klimenko, Theor. Math. Phys. 89, 1161 (1992) [Teor. Mat. Fiz. 89, 211 (1991)]. https://doi.org/10.1007/BF01015908

  115. K.G. Klimenko, Z. Phys. C 54, 323 (1992). https://doi.org/10.1007/BF01566663

    Article  ADS  MathSciNet  Google Scholar 

  116. K.G. Klimenko, Theor. Math. Phys. 90, 1 (1992) [Teor. Mat. Fiz. 90, 3 (1992)]. https://doi.org/10.1007/BF01018812

  117. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994) [Erratum: Phys. Rev. Lett. 76, 1005 (1996)]. arXiv:hep-ph/9405262 [hep-ph] https://doi.org/10.1103/PhysRevLett.73.3499. https://doi.org/10.1103/PhysRevLett.76.1005

  118. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 52, 4718 (1995). https://doi.org/10.1103/PhysRevD.52.4718. arXiv:hep-th/9407168 [hep-th]

    Article  ADS  Google Scholar 

  119. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Lett. B 349, 477 (1995). https://doi.org/10.1016/0370-2693(95)00232-A. arXiv:hep-ph/9412257 [hep-ph]

    Article  ADS  Google Scholar 

  120. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996). https://doi.org/10.1016/0550-3213(96)00021-1. arXiv:hep-ph/9509320 [hep-ph]

    Article  ADS  Google Scholar 

  121. D. Giataganas, JHEP 07, 031 (2012). https://doi.org/10.1007/JHEP07(2012)031. arXiv:1202.4436 [hep-th]

    Article  ADS  Google Scholar 

  122. D. Giataganas, H. Soltanpanahi, Phys. Rev. D 89, 026011 (2014). arXiv:1310.6725 [hep-th]. https://doi.org/10.1103/PhysRevD.89.026011

  123. D. Giataganas, H. Soltanpanahi, JHEP 06, 047 (2014). arXiv:1312.7474 [hep-th]. https://doi.org/10.1007/JHEP06(2014)047

  124. K. Fukushima, K. Hattori, H.-U. Yee, Y. Yin, Phys. Rev. D 93, 074028 (2016). arXiv:1512.03689 [hep-ph]. https://doi.org/10.1103/PhysRevD.93.074028

  125. S.I. Finazzo, R. Critelli, R. Rougemont, J. Noronha, Phys. Rev. D 94 (2016). https://doi.org/10.1103/PhysRevD.94.054020. arXiv:1605.06061 [hep-ph]

  126. M. Kurian, S.K. Das, V. Chandra, Phys. Rev. D 100, 074003 (2019). arXiv:1907.09556 [nucl-th]. https://doi.org/10.1103/PhysRevD.100.074003

  127. M. Kurian, V. Chandra, S.K. Das, Phys. Rev. D 101, 094024 (2020). arXiv:2002.03325 [nucl-th]. https://doi.org/10.1103/PhysRevD.101.094024

  128. B. Singh, M. Kurian, S. Mazumder, H. Mishra, V. Chandra, S.K. Das (2020). arXiv:2004.11092 [hep-ph]

  129. J. Adam, et al. (STAR Collaboration), Phys. Rev. Lett. 123, 162301 (2019). arXiv:1905.02052 [nucl-ex]. https://doi.org/10.1103/PhysRevLett.123.162301

  130. S. Acharya, et al. (ALICE Collaboration), Phys. Rev. Lett. 125, 022301 (2020). arXiv:1910.14406 [nucl-ex]. https://doi.org/10.1103/PhysRevLett.125.022301

  131. S.K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina, V. Greco, Phys. Lett. B 768, 260 (2017). https://doi.org/10.1016/j.physletb.2017.02.046. arXiv:1608.02231 [nucl-th]

    Article  ADS  Google Scholar 

  132. U. Gürsoy, D. Kharzeev, K. Rajagopal, Phys. Rev. C 89, 054905 (2014). arXiv:1401.3805 [hep-ph]. https://doi.org/10.1103/PhysRevC.89.054905

  133. S. Chatterjee, P. Bożek, Phys. Rev. Lett. 120, 192301 (2018). arXiv:1712.01189 [nucl-th]. https://doi.org/10.1103/PhysRevLett.120.192301

  134. S. Chatterjee, P. Bożek, Phys. Lett. B 798, 134955 (2019). arXiv:1804.04893 [nucl-th]. https://doi.org/10.1016/j.physletb.2019.134955

  135. L. Oliva, Eur. Phys. J. A 56, 255 (2020). https://doi.org/10.1140/epja/s10050-020-00260-3. arXiv:2007.00560 [nucl-th]

    Article  ADS  Google Scholar 

  136. L. Oliva, S. Plumari, V. Greco, JHEP 05, 034 (2021). https://doi.org/10.1007/JHEP05(2021)034. arXiv:2009.11066 [hep-ph]

    Article  ADS  Google Scholar 

  137. Y. Sun, V. Greco, S. Plumari (2021). arXiv:2104.03742 [nucl-th]

  138. G.S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S.D. Katz, S. Krieg, A. Schäfer, K.K. Szabó, JHEP 02, 044 (2012). https://doi.org/10.1007/JHEP02(2012)044. arXiv:1111.4956 [hep-lat]

    Article  ADS  Google Scholar 

  139. E.V. Luschevskaya, O.V. Larina, Nucl. Phys. B 884, 1 (2014). https://doi.org/10.1016/j.nuclphysb.2014.04.003. arXiv:1203.5699 [hep-lat]

    Article  ADS  Google Scholar 

  140. Y. Hidaka, A. Yamamoto, Phys. Rev. D 87, 094502 (2013). arXiv:1209.0007 [hep-ph]. https://doi.org/10.1103/PhysRevD.87.094502

  141. E.V. Luschevskaya, O.E. Solovjeva, O.A. Kochetkov, O.V. Teryaev, Nucl. Phys. B 898, 627 (2015). https://doi.org/10.1016/j.nuclphysb.2015.07.023. arXiv:1411.4284 [hep-lat]

    Article  ADS  Google Scholar 

  142. E.V. Luschevskaya, O.E. Solovjeva, O.V. Teryaev, Phys. Lett. B 761, 393 (2016). https://doi.org/10.1016/j.physletb.2016.08.054. arXiv:1511.09316 [hep-lat]

    Article  ADS  Google Scholar 

  143. G.S. Bali, B.B. Brandt, G. Endrödi, B. Gläßle, Phys. Rev. D 97, 034505 (2018). arXiv:1707.05600 [hep-lat]. https://doi.org/10.1103/PhysRevD.97.034505

  144. R. Bignell, W. Kamleh, D. Leinweber, Phys. Lett. B 811, 135853 (2020). arXiv:2005.10453 [hep-lat]. https://doi.org/10.1016/j.physletb.2020.135853

  145. H.T. Ding, S.T. Li, A. Tomiya, X.D. Wang, Y. Zhang (2020). arXiv:2008.00493 [hep-lat]

  146. E.V. Luschevskaya, O.V. Teryaev, D.Y. Golubkov, O.V. Solovjeva, R.A. Ishkuvatov, JHEP 11, 186 (2018). https://doi.org/10.1007/JHEP11(2018)186. arXiv:1811.02344 [hep-lat]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants nos. JP17K14277, JP19H05159, JP19J13655, JP20K03959, and JP20K14476).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachio Iwasaki, Makoto Oka or Kei Suzuki.

Additional information

Communicated by Carsten Urbach

Appendices

Appendix A: S-wave charmonia

In this Appendix, we briefly review the mass spectra of S-wave charmonia and wave function deformation as a characteristic phenomenon of quarkonia in a magnetic field. In Refs. [19, 20], the authors evaluated the mass spectra and wave functions of quarkonia from the constituent quark model under a constant (or static) magnetic field [17] and the cylindrical Gaussian expansion method (CGEM) [19, 20] which is a numerical approach to solve the anisotropic few-body systems.

Fig. 6
figure 6

Mass spectra and probability densities of the S-wave charmonia in a magnetic field [20]. Upper: \(S_z=\pm \,1\) states from \(J/\psi \) and \(\psi (2S)\). Lower: \(S_z=0\) states from \(\eta _c(1S)\), \(J/\psi \), \(\eta _c(2S)\), and \(\psi (2S)\)

In Fig. 6, we show the mass spectra and probability densities (namely, the squares of wave functions) on the \(\rho \)-z plane. The S-wave charmonia has the four states below the two-meson (\(D{\bar{D}}\)) threshold: the spin-singlet \(\eta _c(1S)\)-\(\eta _c(2S)\) and the spin-triplet \(J/\psi \)-\(\psi (2S)\). The upper panel of Fig. 6 shows the magnetic-field dependence of the masses of the two lowest vector charmonia, \(J/\psi \) (red points) and \(\psi (2S)\) (blue points), with \(S_z=\pm \,1\). These states do not mix with different spin eigenstates. With increasing magnetic field, the masses increase by quark Landau levels (or harmonic-oscillator-type potential in the \(\rho \) direction). At the same time, their wave functions are squeezed on the \(\rho \) plane, and then, they are stretched along the z axis, as shown in small windows. Here, the row of three small windows shows the probability densities at \(eB = 0\), 1.0, and \(10.0 \ \mathrm {GeV}^2\). For example, at \(eB = 0\) (the left), we can obtain the spherical (or isotropic) wave functions. At \(eB = 1.0 \ \mathrm {GeV}^2\) (the middle), the 1S state is not significantly modified, while the 2S state is drastically deformed and its form is the first excitation not in the radial direction but in the z direction. At \(eB = 10.0 \ \mathrm {GeV}^2\) (the right), the 1S state becomes a “cigar-shaped” wave function, and 2S state becomes “rod-shaped”. Note that these deformation is equivalent to mixing between the S-wave and higher partial waves with an even number of orbital angular momentum (\(L=2,4,\ldots \)). In this sense, radial eigenstates such as 1S and 2S are no longer “true” eigenstates, and the true eigenstates in finite magnetic fields are represented as mixing states between different partial waves, which reflects the fact that a magnetic field violates the spherical symmetry, and the orbital angular momentum is no longer a good quantum number.

As another interesting behavior in the upper panel of Fig. 6, one can see a linear increase of the charmonium masse in the strong-magnetic-field region. This behavior can be easily understood by the picture of quark Landau levels. The energies of nonrelativistic Landau levels for a one-body quark with a mass m are represented as \((|qB|/m)(n+1/2)\) with an integer n. In the strong-field limit, this energy is dominated by the lowest Landau level (\(n=0\)). By substituting \(|qB|=(2/3)|eB|\) and \(m_c=1.8\) GeV into this expression, the sum of the mass shifts of the two quarks is estimated to be 0.37|eB| GeV, which is consistent with the slope obtained from the numerical results in Fig. 6. Thus, the magnetic behavior of \(S_z=\pm \,1\) states in the strong-field limit can be well approximated by a picture with single quarks. In addition, such a rough estimate seems to be slightly larger than the slope of the 1S state. This tendency may be caused by an attractive mass shift from the Coulomb potential.

The lower panel of Fig. 6 shows the mass spectra of \(S_z=0\) states, where the spin-singlet eigenstates are mixed with the \(S_z=0\) components of the spin-triplet states. Due to the level repulsion between the two states, the mass of the first state (red points) starting from \(\eta _c(1S)\) decreases in nonzero magnetic fields, while that of the second state (blue points) starting from \(J/\psi \) increases. At \(eB = 1.0{-}1.1 \ \mathrm {GeV}^2\), the second state approaches the third state (magenta points) from \(\eta _c(2S)\). After the crossing, the second state becomes a 2S-like wave function, and the third state does 1S-like. Similarly, we find the crossing between the third and fourth states at \(eB = 1.8\)-\(1.9 \ \mathrm {GeV}^2\) and the crossing between the fourth and fifth states at \(eB = 0.6\)-\(0.7 \ \mathrm {GeV}^2\). Thus, the wave functions of excited states are more sensitive to a magnetic field than the ground states. We emphasize that the position of a crossing point between two states is useful as a visible guideline to determine the mass spectrum under a magnetic field.

Appendix B: S-wave bottomonia

Next, we compare the magnetic responses of charmonia and bottomonia. Significant differences between the charm and bottom quarks are (i) the electric charges and (ii) the quark masses.Footnote 1 The absolute value of the electric charge of bottom quarks is \(|q_b| = (1/3)|e|\) which is two times smaller than that of charm quarks \(|q_c| = (2/3)|e|\). The masses of bottom quarks are approximately three times heavier than those of charm quarks. Hence, we can expect that bottomonia are less sensitive to a magnetic field than charmonia.

Fig. 7
figure 7

Mass spectra and probability densities of the S-wave bottomonia in a magnetic field [20]. Upper: \(S_z=\pm \,1\) states from \(\varUpsilon (1S)\), \(\varUpsilon (2S)\), and \(\varUpsilon (3S)\). Lower: \(S_z=0\) states from \(\eta _b(1S)\), \(\varUpsilon (1S)\), \(\eta _b(2S)\), \(\varUpsilon (2S)\), \(\eta _b(3S)\), and \(\varUpsilon (3S)\)

In Fig. 7, we show the mass spectra of bottmonia, obtained in Ref. [20]. The S-wave bottomonia have six states below the two-meson (\(B{\bar{B}}\)) threshold: the spin-singlet \(\eta _b(1S)\)-\(\eta _b(2S)\)-\(\eta _b(3S)\) and spin-triplet \(\varUpsilon (1S)\)-\(\varUpsilon (2S)\)-\(\varUpsilon (3S)\). The upper panel of Fig. 7 shows the spectra of \(S_z=\pm \,1\) states. At \(eB = 1.0 \ \mathrm {GeV}^2\), the wave functions of 1S, 2S, and 3S states are almost spherical, which is a situation different from the charmonum spectrum, where \(\psi (2S)\) is significantly deformed. Even at \(eB = 10.0 \ \mathrm {GeV}^2\), the wave function of the ground state is still spherical. The insensitivity of bottomonia to magnetic fields can be seen also in the magnitude of the mass shift.

The lower panel of Fig. 7 shows the mass spectra of \(S_z=0\) states. With the same mechanism as the charmonia, one can see the level crossing between different levels. The crossing point between the second and third states is at \(eB = 5.5 \ \mathrm {GeV}^2\), while the corresponding point in the charmonium spectrum is \(eB = 1.0{-}1.1 \ \mathrm {GeV}^2\). Similarly, one can see that \(eB = 8.5 \ \mathrm {GeV}^2\) for the third and fourth states, \(eB = 3.0 \ \mathrm {GeV}^2\) for the fourth and fifth states, and \(eB = 5.0 \ \mathrm {GeV}^2\) for the fifth and sixth states.

Appendix C: P-wave charmonia and hadronic Paschen–Back effect

In this Appendix, we briefly review the hadronic Paschen–Back effect (HPBE) [21] which is analogous to a phenomenon observed in atomic physics, the Paschen–Back effect [61]. The HPBE is realized by interplay between an orbital angular momentum of hadrons and a magnetic field. The HPBE occurs in various hadrons with a finite orbital angular momentum, but here we focus on the P-wave charmonia: the spin-singlet \(h_c\) (\(^1 \! P_1\)) and spin-triplet \(\chi _{c0}\) (\(^3 \! P_0\)), \(\chi _{c1}\) (\(^3 \! P_1\)), and \(\chi _{c2}\) (\(^3 \! P_2\)), where we used a notation \(^{2S+1} \! P_J\) with the total angular momentum \(J=L+S\), orbital angular momentum L, and spin angular momentum S. In zero magnetic field, \(L_z\) and \(S_z\) are not conserved by the existence of the LS and tensor coupling, and the good quantum numbers are J, L, and S.

When a magnetic field is switched on, only the z component of the total angular momentum, \(J_z=L_z+ S_z\), is a conserved quantity. In addition, if the magnetic field becomes stronger than the scale of the spin-orbit splitting, \(L_z\) and \(S_z\) are approximately good quantum numbers. Then, instead of the \(|{J;LS}\rangle \) bases used in weak fields, it may be convenient to use a new basis \(|{J_z;L_zS_z}\rangle \) in a strong field. We call such a strong magnetic-field region the PB region (or the PB limit for the strong-field limit).Footnote 2 In particular, the wave functions of P-wave charmonia in the PB region are approximately expressed as

$$\begin{aligned} \varPsi _{L_z;S_{1z}S_{2z}}(\rho ,z,\phi ) = \varPhi _{L_z}(\rho , z) Y_{1 L_z}(\theta ,\phi )\chi (S_{1z}, S_{2z}), \end{aligned}$$
(C.1)

where \((\rho ,z,\phi )\) is the cylindrical coordinate, and \(\tan \theta =\rho /z\). This configuration is composed of two parts: (i) the spatial part and (ii) spin part. The spatial wave function is defined by \(\varPhi (\rho ,z)\) and the spherical harmonics \(Y_{1L_z}(\theta ,\phi )\).Footnote 3 The spin wave function is defined as \(\chi (S_{1z}, S_{2z})\), where \(S_{1z}\) and \( S_{2z}\) are the third components of the spin of the charm quarks.

Fig. 8
figure 8

Mass spectra of the P-wave charmonia in a magnetic field [21]. Upper: \(J_z=\pm \,2\) states from \(\chi _{c2}(1P)\) and \(\chi _{c2}(2P)\) and \(J_z=\pm \,1\) states from \(\chi _{c1}(1P)\), \(h_c(1P)\), \(\chi _{c2}(1P)\), and \(\chi _{c1}(2P)\). Lower: \(J_z=0\) states from \(\chi _{c0}(1P)\), \(\chi _{c1}(1P)\), \(h_c(1P)\), \(\chi _{c2}(1P)\), and \(\chi _{c0}(2P)\)

The mass spectra of P-wave charmonia in a magnetic field is shown in Fig. 8. The upper panel shows both the \(J_z = \pm \,2\) and \(J_z = \pm \,1\) states, and the lower panel shows \(J_z = 0\). The \(J_z = \pm \,2\) states starting from \(\chi _{c2}\) are not mixed with other states, so that their masses continue to increase, which is similar to the \(S_z=\pm \, 1\) states of the S-waves. The \(J_z = \pm \,1,0\) states exhibit the mixing between spin eigenstates, which is similar to the \(S_z=0\) states of the S-waves. As a result of the mixing and level repulsion, the masses of the lowest states decrease as the magnetic field increases, while higher states becomes heavier. We find the level crossings between the 1P-like state and 2P-like state at \(eB = 0.6 \ \mathrm {GeV}^2\) for \(J_z=\pm \,1\), and at \(eB = 0.5\) and \(0.8\ \mathrm {GeV}^2\) for \(J_z=0\). Thus, the magnetic field for the crossing between 1P and 2P states is smaller than that for the corresponding 1S and 2S states.

Fig. 9
figure 9

Probability densities of wave functions of P-wave charmonia for \(J_z=\pm \,1\) in magnetic fields [21]. The vertical axis is \(|\varPsi (\rho , z, \phi )|^2\), and the horizontal plane is represented by the \(\rho \) and z axes, where \(\rho \) (z) is the spatial direction perpendicular (parallel) to the magnetic field

In Fig. 9, we show the probability densities on the \(\rho \)-z plane, defined as \(|\varPsi (\rho , z, \phi )|^2\) for the \(J_z=\pm \,1\) states. At \(eB=0\) [(a), (d), and (g)], the “1st”, “2nd”, and “3rd” wave functions correspond to \(\chi _{c1}, h_c\), and \(\chi _{c2}\) states, respectively. With increasing magnetic field, the wave functions are gradually deformed. At \(eB=0.1 \ \mathrm {GeV}^2\) [(c), (f), and (i)], one can see probability densities characterized by \(|L_z|\). Note that the Hamiltonian has inversion symmetry along the z-axis, so that we see the same physics for both the \(L_z=\pm \, 1\) states. For example, the basis function with \(L_z=\pm \,1\) is characterized by the factor of \(r Y_{1\,\pm \,1}(\theta , \phi )\propto r\cos \theta e^{\pm i\phi }=\rho e^{\pm i\phi }\). This factor means that the magnitude of the wave function on the z axis is zero [see (c) and (i)]. On the other hand, the basis function with \(L_z=0\) is based on the factor of \(r Y_{10}(\theta , \phi ) \propto r\sin \theta =z\). This means that the wave function amplitude on the \(\rho \) axis is zero [see (f)]. Thus, in the PB limit, the spatial wave function of an eigenstate is purified to either wave function with \(L_z=\pm \,1\) or \(L_z=0\). The magnetic field of \(eB=0.1 \ \mathrm {GeV}^2\) can be well approximated as the PB limit, and thus one can observe drastic deformation by the HPBE even in small magnetic fields.

We emphasize that the deformation mechanism by the HPBE is quite different from that in S-wave quarkonia. The deformation in S-waves is induced by quark Landau levels, or equivalently the mixing between an S-wave and higher partial waves with an even orbital angular momentum, \(L=2,4,\ldots \). On the other hand, the origin of the HPBE is “resolving” the mixed states originating from the LS coupling between two quarks. Therefore, the scale of magnetic fields that induces the HPBE corresponds to the LS splitting of hadron masses, which leads to drastic deformation in relatively smaller magnetic field than that for S-waves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, S., Oka, M. & Suzuki, K. A review of quarkonia under strong magnetic fields. Eur. Phys. J. A 57, 222 (2021). https://doi.org/10.1140/epja/s10050-021-00533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00533-5

Navigation