Skip to main content
Log in

Nucleon-induced inelastic scattering with statistical strength functions and the ECIS direct reaction code

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Modern theoretical descriptions of inelastic scattering make use of multi-step direct reaction approaches together with transition potentials obtained from sophisticated nuclear structure models. Here we demonstrate how the complexity of such calculations can be reduced to permit simpler ones, also using the ECIS code, but providing an almost equally precise alternative to a much more detailed calculation. We have studied the transition form factors within the random phase approximation (RPA), where these are obtained as linear combinations of particle–hole states. At moderate to high excitation energies, where interference effects tend to disappear, we have proposed an independent particle–hole formalism in which particle–hole states are spread in energy with an appropriate strength function obtained from the RPA. The effects of more complex modes, such as 2p–2h ones, are simulated with widths calculated in a semi-classical context. Here, we verify the validity of our approximations for pre-equilibrium proton-induced reactions on \(^{90}\)Zr target. Our calculations provide a good description of the reaction data and point toward a simplification of the description of nucleon-induced reactions based on averages of microscopic details of the projectile–target interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The paper is a theoretical study of inelastic pre-equilibrium processes. As it is purely theoretical, there is no data to deposit.]

References

  1. S. Qaim, F. Tárkányi, R. Capote, et al.,Nuclear Data for the Production of Therapeutic Radionuclides. No. 473 in Technical Reports Series (International Atomic Energy Agency, Vienna, 2012)

  2. G.B. Saha, Physics and Radiobiology of Nuclear Medicine (Springer, New York, 2013).

    Book  Google Scholar 

  3. R.H. Cyburt, B.D. Fields, K.A. Olive, T.H. Yeh, Rev. Mod. Phys. 88, 015004 (2016). https://doi.org/10.1103/RevModPhys.88.015004

    Article  ADS  Google Scholar 

  4. K. Amos, O.J. Dortmans, H.V. von Geramb, S. Karataglidis, J. Raynal, Adv. Nuclear Phys. 25, 276 (2000)

    Article  Google Scholar 

  5. M. Dupuis, Eur. Phys. J. A 53(5), 111 (2017). https://doi.org/10.1140/epja/i2017-12293-6

    Article  ADS  Google Scholar 

  6. G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki, J. Engel, Phys. Rev. C 84, 064609 (2011)

    Article  ADS  Google Scholar 

  7. J.E. Escher, J.T. Burke, R.O. Hughes, N.D. Scielzo, R.J. Casperson, S. Ota, H.I. Park, A. Saastamoinen, T.J. Ross, Phys. Rev. Lett. 121, 052501 (2018)

    Article  ADS  Google Scholar 

  8. A. Ratkiewicz, J.A. Cizewski, J.E. Escher, G. Potel, J.T. Burke, R.J. Casperson, M. McCleskey, R.A.E. Austin, S. Burcher, R.O. Hughes, B. Manning, S.D. Pain, W.A. Peters, S. Rice, T.J. Ross, N.D. Scielzo, C. Shand, K. Smith, Phys. Rev. Lett. 122, 052502 (2019)

    Article  ADS  Google Scholar 

  9. H. Fesbach, Theoretical Nuclear Physics: Nuclear Reactions (Wiley, New York, 1992).

    Google Scholar 

  10. J. Raynal, Computing as a Language of Physics (IAEA, Vienna, 1972).

    Google Scholar 

  11. J. Raynal, Notes on ECIS94, CEA Saclay Report CEA-N-2772 (1994)

  12. G. Colò, L. Cao, N. Van Giai, L. Capelli, Comput. Phys. Commun. 184(1), 142 (2013). https://doi.org/10.1016/j.cpc.2012.07.016

    Article  ADS  MathSciNet  Google Scholar 

  13. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nuclear Phys. A 635(1), 231 (1998)

    Article  ADS  Google Scholar 

  14. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nuclear Phys. A 643(4), 441 (1998)

    Article  Google Scholar 

  15. E.V. Chimanski, B.V. Carlson, R. Capote, A.J. Koning, Phys. Rev. C 99, 014305 (2019). https://doi.org/10.1103/PhysRevC.99.014305

    Article  ADS  Google Scholar 

  16. A. Koning, J. Delaroche, Nuclear Phys. A 713(3), 231 (2003)

    Article  ADS  Google Scholar 

  17. A. Nadasen, P. Schwandt, P.P. Singh, W.W. Jacobs, A.D. Bacher, P.T. Debevec, M.D. Kaitchuck, J.T. Meek, Phys. Rev. C 23, 1023 (1981)

    Article  ADS  Google Scholar 

  18. A.A. Cowley, A. van Kent, J.J. Lawrie, S.V. Förtsch, D.M. Whittal, J.V. Pilcher, F.D. Smit, W.A. Richter, R. Lindsay, I.J. van Heerden, R. Bonetti, P.E. Hodgson, Phys. Rev. C 43, 678 (1991)

    Article  ADS  Google Scholar 

  19. E. V. Chimanski, R. Capote, B. V. Carlson, A. J. Koning, Proceedings of the 6th International Workshop on Compound-Nuclear Reactions and Related Topics CNR*18, (Springer), 65 (2021)

  20. N. Frazier, B.A. Brown, V. Zelevinsky, Phys. Rev. C 54, 1665 (1996). https://doi.org/10.1103/PhysRevC.54.1665

    Article  ADS  Google Scholar 

  21. H. Nishioka, H.A. Weidenmüller, S. Yoshida, Ann. Phys. (N.Y.) 183, 166 (1988)

    Article  ADS  Google Scholar 

  22. C A. Soares. Pompeia, B.V. Carlson, Phys. Rev. C 74, 054609 (2006). https://doi.org/10.1103/PhysRevC.74.054609

    Article  ADS  Google Scholar 

  23. A. Koning, M. Duijvestijn, Nuclear Phys. A 744, 15 (2004)

    Article  ADS  Google Scholar 

  24. C.K. Cline, M. Blann, Nuclear Phys. A 172, 225 (1971)

    Article  ADS  Google Scholar 

  25. J. Dobes, E. Betak, Nuclear Phys. A 272, 353 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

EVC acknowledges financial support from Grants 2016/07398-8 and 2017/13693-5 of the São Paulo Research Foundation (FAPESP). BVC acknowledges financial support from Grant 2017/05660-0 of the São Paulo Research Foundation (FAPESP) and Grant 306433/2017-6 of CNPq. EVC and BVC acknowledge support from the INCT-FNA project 464898/2014-5. This work is performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with support from LDRD project 19-ERD-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chimanski.

Additional information

Communicated by Nicolas Alamanos

Appendix

Appendix

The effects of transitions to incoherent 2p–2h modes can be estimated by the product of an averaged value of the squared transition matrix element times the density of available 2p–2h states \(\omega (E) \), [24]

$$\begin{aligned} \gamma _{2p2h}(E) = 2\pi M^{2} \omega (E), \end{aligned}$$
(16)

where we use a semi-empirical parameterization of the residual interaction proposed by Koning and Duijvestijn [23] for the average squared transition matrix element,

$$\begin{aligned} M^{2}=\frac{1}{A^{3}}\left[ 6.8 + \frac{4.2 \times 10^{5}}{(E/2+10.7)^{3}}\right] \;\text{ MeV}^2\,, \end{aligned}$$
(17)

with E being the excitation energy and A the target mass. The density of available 2p–2h states is obtained, following Cline and Blann (with \(p=2\) and \(h=2\)) [24, 25], as

$$\begin{aligned} \omega (E)= {\left\{ \begin{array}{ll} \frac{(gE-1)^{2}}{6E} &{} gE>1 \\ 0 &{} gE<1 , \end{array}\right. } \end{aligned}$$
(18)

where \(g=A/15\) MeV\(^{-1}\) is the average single-particle density of states [23]. We approximate the escape widths, \(\gamma _{n}^{\uparrow }\) and \(\gamma _{p}^{\uparrow }\), as

$$\begin{aligned} \gamma ^{\uparrow }_{n,p}\left( E\right) =\frac{(2s+1)m}{\pi ^2\hbar ^2}\pi R^2\frac{\left( E-B_{n,p}-V_B\right) ^2}{2gE}\;\text{ MeV } \end{aligned}$$
(19)

where m is the nucleon mass, \(s=1/2\) is the nucleon spin, \(B_n\) and \(B_p\) are the neutron and proton separation energies, the nuclear radius is taken to be \(R=1.2 A^{1/3}\) fm and the emission barrier is taken to be 0 for neutrons and \(V_B = 1.44*Z/(1.25A^{1/3})\) MeV for protons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chimanski, E.V., Carlson, B.V. Nucleon-induced inelastic scattering with statistical strength functions and the ECIS direct reaction code. Eur. Phys. J. A 57, 212 (2021). https://doi.org/10.1140/epja/s10050-021-00497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00497-6

Navigation