Skip to main content
Log in

Neutron–proton spin–spin correlations in the ground states of \(N=Z\) nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We present expressions for the matrix elements of the spin–spin operator \(\mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\) in a variety of coupling schemes. These results are then applied to calculate the expectation value \(\langle \mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\rangle \) in eigenstates of a schematic Hamiltonian describing neutrons and protons interacting in a single-l shell through a Surface Delta Interaction. The model allows us to trace \(\langle \mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\rangle \) as a function of the competition between the isovector and isoscalar interaction strengths and the spin–orbit splitting of the \(j=l\pm {{1}\big /{2}}\) shells. We find negative \(\langle \mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\rangle \) values in the ground state of all even–even \(N=Z\) nuclei, contrary to what has been observed in hadronic inelastic scattering at medium energies. We discuss the possible origin of this discrepancy and indicate directions for future theoretical and experimental studies related to neutron–proton spin–spin correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The paper contains no additional data. All results, in particular those shown in the figures, can be deduced from the equations given in the paper.]

References

  1. A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. 110, 936 (1958)

    Article  ADS  Google Scholar 

  2. R.A. Broglia, V. Zelevinsky (eds.), Fifty Years of Nuclear BCS (World Scientific, Singapore, 2013)

    Google Scholar 

  3. D.M. Brink, R.A. Broglia, Nuclear Superfluidity: Pairing in Finite Systems (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  4. S. Frauendorf, A.O. Macchiavelli, Prog. Part. Nucl. Phys. 78, 24 (2014). and references therein

    Article  ADS  Google Scholar 

  5. A.O. Macchiavelli, Fifty Years of Nuclear BCS (World Scientific, Singapore, 2013), p. 432

    Book  Google Scholar 

  6. A.V. Afanasjev, Fifty Years of Nuclear BCS (World Scientific, Singapore, 2013), p. 138

    Book  Google Scholar 

  7. R.A. Broglia, O. Hansen, C. Riedel, Two-Neutron Transfer Reactions and the Pairing Model, in Advances in Nuclear Physics, ed. by M. Baranger, E. Vogt (Springer, Boston, 1973)

    Google Scholar 

  8. B.F. Bayman, N.M. Hintz, Phys. Rev. 172, 1113 (1968)

    Article  ADS  Google Scholar 

  9. J. Engel, K. Langanke, P. Vogel, Phys. Lett. B 389, 211 (1996)

    Article  ADS  Google Scholar 

  10. P. Fröbrich, Phys. Lett. B 37, 338 (1971)

    Article  ADS  Google Scholar 

  11. P. Van Isacker, D.D. Warner, A. Frank, Phys. Rev. Lett. 94, 162502 (2005)

    Article  ADS  Google Scholar 

  12. H. Matsubara, PhD Dissertation (Osaka University, Department of Physics, 2010)

  13. H. Matsubara et al., Phys. Rev. Lett. 115, 102501 (2015)

    Article  ADS  Google Scholar 

  14. A. Tamii, Invited Talk (University of Hong Kong, Workshop on Np Correlations, July 2015)

  15. H. Sagawa, T. Suzuki, Phys. Rev. C 97, 054333 (2018)

    Article  ADS  Google Scholar 

  16. B.R. Barrett, P. Navratil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013)

    Article  ADS  Google Scholar 

  17. B. Cederwall, F. Moradi, T. Bäck et al., Nature (Lond.) 469, 68 (2011)

    Article  ADS  Google Scholar 

  18. R. Subedi, R. Shneor, P. Monaghan et al., Science 320, 1476 (2008)

    Article  ADS  Google Scholar 

  19. E. Wigner, Phys. Rev. 51, 106 (1937)

    Article  ADS  Google Scholar 

  20. A. de-Shalit, I. Talmi, Nuclear Shell Theory (Academic Press, New York, 1963)

    Google Scholar 

  21. I. Talmi, Simple Models of Complex Nuclei. The Shell Model and the Interacting Boson Model (Harwood, Chur, 1993)

  22. P.J. Brussaard, P.W.M. Glaudemans, Shell-Model Applications in Nuclear Spectroscopy (North-Holland, Amsterdam, 1977)

    Google Scholar 

  23. A. Bohr, B.R. Mottelson, Nuclear Structure I, Single-Particle Motion (Benjamin, New York, 1969)

    Google Scholar 

  24. A.F. Lisetskiy, R.V. Jolos, N. Pietralla, P. von Brentano, Phys. Rev. C 60, 064310 (1999)

    Article  ADS  Google Scholar 

  25. https://www.nishina.riken.jp/ribf/

  26. https://frib.msu.edu/

  27. https://fair-center.eu/

  28. A. O. Macchiavelli et al., iThemba Proposal PR353 (2019)

  29. M. Hamermesh, Group Theory and Its Application to Physical Problems (Addison-Wesley, Reading, 1962)

    Book  Google Scholar 

  30. J.P. Elliott, J.A. Evans, Phys. Lett. B 101, 216 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is based on research supported in part by the Director, Office of Science, Office of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (LBNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Van Isacker.

Additional information

Communicated by Mark Caprio

Appendix: SU(4) character of \(\mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\)

Appendix: SU(4) character of \(\mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\)

The tensor character of \(\mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\) under SU(4) can be determined by noting that the generators (3) transform as \([211]\equiv (101)\) tensors, where the first refers to the notation \([f'_1f'_2f'_3]\equiv [f_1-f_4,f_2-f_4,f_3-f_4]\) in terms of the Young tableau \([f_1f_2f_3f_4]\) (for a discussion of the latter, see Ref. [29]) and the second is the notation of supermultiplets from Ref. [30], \((\lambda \mu \nu )\equiv (f_1-f_2,f_2-f_3,f_3-f_4)\). The tensor character of any product of the SU(4) generators must therefore belong to

$$\begin{aligned}&[211]\times [211]\nonumber \\ {}&\quad = [0]+[211]^2+[22]+[31]+[332]+[422], \nonumber \\&\quad =(000)+(101)^2+(020)+(210)+(012)+(202). \end{aligned}$$
(20)

Furthermore, since \(\mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\) is a scalar in spin and a combination of a scalar and a tensor in isospin, it can only belong to an SU(4) irreducible representation which contains the spin–isospin combinations \((ST)=(00)\) or (02). Given the \(\mathrm{SU}(4)\supset \mathrm{SU}_S(2)\otimes \mathrm{SU}_T(2)\) reductions

$$\begin{aligned}{}[f'_1f'_2f'_3]={}&(\lambda \mu \nu )\rightarrow \textstyle {\sum _{ST}(ST)}, \nonumber \\ [0]={}&(000)\rightarrow \mathbf {(00)}, \nonumber \\ [211]={}&(101)\rightarrow (01)+(10)+(11), \nonumber \\ [22]={}&(020)\rightarrow \mathbf {(00)}+(11)+\mathbf {(02)}+(20), \nonumber \\ [31]={}&(210)\rightarrow (01)+(10)+(11)+(12)+(21), \nonumber \\ [332]={}&(012)\rightarrow (01)+(10)+(11)+(12)+(21), \nonumber \\ [422]={}&(202)\rightarrow \mathbf {(00)}+(11)^2+\mathbf {(02)}+(20)\nonumber \\&+(12)+(21)+(22), \end{aligned}$$
(21)

it follows that \(\mathbf {S}_\mathrm{n}\cdot \mathbf {S}_\mathrm{p}\) must be a combination of (000), (020) and (202) SU(4) tensors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Isacker, P., Macchiavelli, A.O. Neutron–proton spin–spin correlations in the ground states of \(N=Z\) nuclei. Eur. Phys. J. A 57, 178 (2021). https://doi.org/10.1140/epja/s10050-021-00489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00489-6

Navigation