Skip to main content
Log in

Isospin dependence of nucleon effective masses in neutron-rich matter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this talk, we first briefly review the isospin dependence of the total nucleon effective mass \(M^{*}_{J}\) inferred from analyzing nucleon-nucleus scattering data within an isospin-dependent non-relativistic optical potential model, and the isospin dependence of the nucleon E-mass \(M^{*,{\text {E}}}_{J}\) obtained from applying the Migdal–Luttinger theorem to a phenomenological single-nucleon momentum distribution in nuclei constrained by recent electron-nucleus scattering experiments. Combining information about the isospin dependence of both the nucleon total effective mass and E-mass, we then infer the isospin dependence of nucleon k-mass using the well-known relation \(M^{*}_{J}=M^{*,{\text {E}}}_{J}\cdot M^{*,{\text {k}}}_{J}\). Implications of the results on the nucleon mean free path in neutron-rich matter are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.P. Jeukenne, A. Lejeune, C. Mahaux, Many-body theory of nuclear matter. Phys. Rep. 25, 83–174 (1976). doi:10.1016/0370-1573(76)90017-X

    Article  Google Scholar 

  2. C. Mahaux, P.F. Bortignon, R.A. Broglia, C.H. Dasso, Dynamics of the shell model. Phys. Rep. 120, 1–274 (1985). doi:10.1016/0370-1573(85)90100-0

    Article  Google Scholar 

  3. M. Jaminon, C. Mahaux, Effective masses in relativistic approaches to the nucleon-nucleus mean field. Phys. Rev. C 40, 354 (1989). doi:10.1103/PhysRevC.40.354

    Article  Google Scholar 

  4. B.A. Li, L.W. Chen, Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions. Mod. Phys. Lett. A 30, 1530010 (2015). doi:10.1142/S0217732315300104

    Article  Google Scholar 

  5. K.S.A. Hassaneen, H. Muether, Correlations and spectral functions in asymmetric nuclear matter. Phys. Rev. C 70, 054308 (2004). doi:10.1103/PhysRevC.70.054308

    Article  Google Scholar 

  6. M. Baldo, L.M. Robledo, P. Schuck, X. Vinas, arXiv:1604.01543

  7. U.-G. Meißner, A.M. Rakhimov, A. Wirzba, U.T. Yakhshiev, Neutron-proton mass difference in nuclear matter. Eur. Phys. J A31, 357–364 (2007). doi:10.1140/epja/i2006-10274-6

    Article  Google Scholar 

  8. D. Page, S. Reddy, Dense matter in compact stars: theoretical developments and observational constraints. Ann. Rev. Nucl. Part. Sci. 56, 327–374 (2006). doi:10.1146/annurev.nucl.56.080805.140600

    Article  Google Scholar 

  9. H.Y. Kong, Y. Xia, J. Xu et al., Reexamination of the neutron-to-proton-ratio puzzle in intermediate-energy heavy-ion collisions. Phys. Rev. C 91, 047601 (2015). doi:10.1103/PhysRevC.91.047601

    Article  Google Scholar 

  10. D.D.S. Coupland, M. Youngs, Z. Chajecki et al., Probing effective nucleon masses with heavy-ion collisions. Phys. Rev. C 94, 011601 (2016). doi:10.1103/PhysRevC.94.011601

    Article  Google Scholar 

  11. X.H. Li, W.J. Guo, B.A. Li, L.W. Chen, F.J. Fattoyev, W.G. Newton, Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model. Phys. Lett. B 743, 408–414 (2015). doi:10.1016/j.physletb.2015.03.005

    Article  Google Scholar 

  12. B.J. Cai, B.A. Li, Nucleon effective E-mass in neutron-rich matter from the Migdal–Luttinger jump. Phys. Letts. B757, 79–83 (2016). doi:10.1016/j.physletb.2016.03.059

    Article  MathSciNet  Google Scholar 

  13. A.M. Lane, Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions. Nucl. Phys. 35, 676–685 (1962). doi:10.1016/0029-5582(62)90153-0

    Article  Google Scholar 

  14. B.A. Li, X. Han, Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B 727, 276–281 (2013). doi:10.1016/j.physletb.2013.10.006

    Article  Google Scholar 

  15. B.A. Li, A. Ramos, G. Verde, I. Vidaña (eds.), Topical issue on nuclear symmetry energy. Eur. Phys. J. A 50(2), 9 (2014)

  16. N.M. Hugenholtz, L. van Hove, A theorem on the single particle energy in a Fermi gas with interaction. Physica 24, 363–376 (1958). doi:10.1016/S0031-8914(58)95281-9

    Article  MathSciNet  MATH  Google Scholar 

  17. K.A. Brueckner, J. Dabrowski, Symmetry energy and the isotopic spin dependence of the single-particle potential in nuclear matter. Phys. Rev. 134, B722 (1964). doi:10.1103/PhysRev.134.B722

    Article  Google Scholar 

  18. J. Dabrowski, P. Haensel, Spin and isospin dependence of the single-particle potential in nuclear matter. Phys. Lett. B 42, 163–166 (1972). doi:10.1016/0370-2693(72)90050-0

    Article  Google Scholar 

  19. J. Dabrowski, P. Haensel, Spin and spin-isospin symmetry energy of nuclear matter. Phys. Rev. C 7, 916 (1973). doi:10.1103/PhysRevC.7.916

    Article  Google Scholar 

  20. J. Dabrowski, P. Haensel, Single particle potential in polarized nuclear matter. Can. J. Phys. 52(18), 1768–1799 (1974). doi:10.1139/p74-235

    Google Scholar 

  21. C. Xu, B.A. Li, L.W. Chen, Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials. Phys. Rev. C 82, 054607 (2010). doi:10.1103/PhysRevC.82.054607

    Article  Google Scholar 

  22. C. Xu, B.A. Li, L.W. Chen, C.M. Ko, Analytical relations between nuclear symmetry energy and single-nucleon potentials in isospin asymmetric nuclear matter. Nucl. Phys. A 865, 1–16 (2011). doi:10.1016/j.nuclphysa.2011.06.027

    Article  Google Scholar 

  23. R. Chen, B.J. Cai, L.W. Chen et al., Single-nucleon potential decomposition of the nuclear symmetry energy. Phys. Rev. C 85, 024305 (2012). doi:10.1103/PhysRevC.85.024305

    Article  Google Scholar 

  24. P.E. Hodgson, The Nucleon Optical Model (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  25. http://www.nndc.bnl.gov/

  26. S. Hama, B.C. Clark, E.D. Cooper et al., Global Dirac optical potentials for elastic proton scattering from heavy nuclei. Phys. Rev. C 41, 2737 (1990). doi:10.1103/PhysRevC.41.2737

    Article  Google Scholar 

  27. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231–310 (2003). doi:10.1016/S0375-9474(02)01321-0

    Article  Google Scholar 

  28. J.-P. Jeukenne, C. Mahaux, R. Sartor, Dependence of the Fermi energy upon neutron excess. Phys. Rev. C 43, 2211 (1991). doi:10.1103/PhysRevC.43.2211

    Article  Google Scholar 

  29. J. Rapaport, V. Kulkarni, R.W. Finlay, A global optical-model analysis of neutron elastic scattering data. Nucl. Phys. A 330, 15–28 (1979). doi:10.1016/0375-9474(79)90533-5

    Article  Google Scholar 

  30. D.M. Patterson, R.R. Doering, A. Galonsky, An energy-dependent Lane-model nucleon-nucleus optical potential. Nucl. Phys. A 263, 261–275 (1976). doi:10.1016/0375-9474(76)90172-X

    Article  Google Scholar 

  31. Z. Zhang, L.W. Chen, Isospin splitting of the nucleon effective mass from giant resonances in \(^{208}\)Pb. Phys. Rev. C 93, 034335 (2016). doi:10.1103/PhysRevC.93.034335

    Article  Google Scholar 

  32. J.W. Negele, K. Yazaki, Mean free path in a nucleus. Phys. Rev. Lett. 47, 71 (1981). doi:10.1103/PhysRevLett.47.71

    Article  Google Scholar 

  33. A.B. Migdal, The momentum distribution of interacting Fermi particles. Sov. Phys. JETP 5, 333 (1957)

    MathSciNet  Google Scholar 

  34. J.M. Luttinger, Fermi surface and some simple equilibrium properties of a system of interacting fermions. Phys. Rev. 119, 1153–1163 (1960). doi:10.1103/PhysRev.119.1153

    Article  MathSciNet  MATH  Google Scholar 

  35. B.J. Cai, B.A. Li, Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter. Phys. Rev. C 92, 011601(R) (2015). doi:10.1103/PhysRevC.92.011601

    Article  Google Scholar 

  36. B.J. Cai, B.A. Li, Symmetry energy of cold nucleonic matter within a relativistic mean field model encapsulating effects of high-momentum nucleons induced by short-range correlations. Phys. Rev. C 93, 014619 (2016). doi:10.1103/PhysRevC.93.014619

    Article  Google Scholar 

  37. O. Hen, M. Sargsian, L.B. Weinstein et al., Momentum sharing in imbalanced Fermi systems. Science 346, 614–617 (2014). doi:10.1126/science.1256785

    Article  Google Scholar 

  38. O. Hen, L.B. Weinstein, E. Piasetzky et al., Correlated fermions in nuclei and ultracold atomic gases. Phys. Rev. C 92, 045205 (2015). doi:10.1103/PhysRevC.92.045205

    Article  Google Scholar 

  39. O. Hen, B.A. Li, W.J. Guo et al., Symmetry energy of nucleonic matter with tensor correlations. Phys. Rev. C 91, 025803 (2015). doi:10.1103/PhysRevC.91.025803

    Article  Google Scholar 

  40. S. Tan, Energetics of a strongly correlated Fermi gas. Ann. Phys. 323, 2952–2970 (2008). doi:10.1016/j.aop.2008.03.004

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Tan, Large momentum part of a strongly correlated Fermi gas. Ann. Phys. 323, 2971–2986 (2008). doi:10.1016/j.aop.2008.03.005

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Tan, Generalized virial theorem and pressure relation for a strongly correlated Fermi gas. Ann. Phys. 323, 2987–2990 (2008). doi:10.1016/j.aop.2008.03.003

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Schwenk, C.J. Pethick, Resonant Fermi gases with a large effective range. Phys. Rev. Lett. 95, 160401 (2005). doi:10.1103/PhysRevLett.95.160401

    Article  Google Scholar 

  44. E. Epelbaum, H. Krebs, D. Lee, Ulf-G Meißner, Ground-state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory. Eur. Phys. A 40, 199–213 (2009). doi:10.1140/epja/i2009-10755-

    Article  Google Scholar 

  45. A. Gezerlis, J. Calson, Low-density neutron matter. Phys. Rev. C 81, 025803 (2010). doi:10.1103/PhysRevC.81.025803

    Article  Google Scholar 

  46. J.T. Stewart, J.P. Gaebler, T.E. Drake et al., Verification of universal relations in a strongly interacting Fermi gas. Phys. Rev. Lett. 104, 235301 (2010). doi:10.1103/PhysRevLett.104.235301

    Article  Google Scholar 

  47. E.D. Kuhnle, H. Hu, X.-J. Liu et al., Universal behavior of pair correlations in a strongly interacting Fermi gas. Phys. Rev. Lett. 105, 070402 (2010). doi:10.1103/PhysRevLett.105.070402

    Article  Google Scholar 

  48. I. Tews, T. Krüger, K. Hebeler, A. Schwenk, Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory. Phys. Rev. Lett. 110, 032504 (2013). doi:10.1103/PhysRevLett.110.032504

    Article  Google Scholar 

  49. T. Krüger, I. Tews, K. Hebeler, A. Schwenk, Neutron matter from chiral effective field theory interactions. Phys. Rev. C 88, 025802 (2013). doi:10.1103/PhysRevC.88.025802

    Article  Google Scholar 

  50. A. Gezerlis, I. Tews, E. Epelbaum et al., Quantum Monte Carlo calculations with chiral effective field theory interactions. Phys. Rev. Lett. 111, 032501 (2013). doi:10.1103/PhysRevLett.111.032501

    Article  Google Scholar 

  51. A. Rios, A. Polls, W.H. Dickhoff, Depletion of the nuclear Fermi sea. Phys. Rev. C 79, 064308 (2009). doi:10.1103/PhysRevC.79.064308

    Article  Google Scholar 

  52. P. Yin, J.Y. Li, P. Wang, W. Zuo, Three-body force effect on nucleon momentum distributions in asymmetric nuclear matter within the framework of the extended Brueckner-Hartree-Fock approach. Phys. Rev. C 87, 014314 (2013). doi:10.1103/PhysRevC.87.014314

    Article  Google Scholar 

  53. A. Rios, A. Polls, W.H. Dickhoff, Density and isospin-asymmetry dependence of high-momentum components. Phys. Rev. C 89, 044303 (2014). doi:10.1103/PhysRevC.89.044303

    Article  Google Scholar 

  54. V. Bernard, C. Mahaux, Self-energy in a semirealistic model of nuclear matter. Phys. Rev. C 23, 888 (1981). doi:10.1103/PhysRevC.23.888

    Article  Google Scholar 

  55. J.P. Blaizot, B.L. Friman, On the nucleon effective mass in nuclear matter. Nucl. Phys. A 372, 69–89 (1981). doi:10.1016/0375-9474(81)90087-7

    Article  Google Scholar 

  56. E. Krotscheck, R.A. Smith, A.D. Jackson, Effective mass enhancement and the imaginary part of the optical potential in nuclear matter. Phys. Lett. B 104, 421–425 (1981). doi:10.1016/0370-2693(81)90506-2

    Article  Google Scholar 

  57. A.D. Jackson, E. Krotscheck, D.E. Meltzer, R.A. Smith, Landau parameters and pairing-on the shores of the nuclear Fermi sea. Nucl. Phys. A 386, 125–165 (1982). doi:10.1016/0375-9474(82)90405-5

    Article  Google Scholar 

  58. P. Grange, J. Cugnon, A. Lejeune, Nuclear mean field with correlations at finite temperature. Nucl. Phys. A 473, 365–393 (1987). doi:10.1016/0375-9474(87)90132-1

    Article  Google Scholar 

  59. M. Baldo, I. Bombaci, G. Giansiracusa et al., Nuclear matter properties from a separable representation of the Paris interaction. Phys. Rev. C 41, 1748 (1990). doi:10.1103/PhysRevC.41.1748

    Article  Google Scholar 

  60. R. Sartor, On the self-consistency requirement in the low density expansion of the optical potential in nuclear matter. Nucl. Phys. A 289, 329–345 (1977). doi:10.1016/0375-9474(77)90036-7

    Article  Google Scholar 

  61. F.D. Jong, R. Malfliet, Conserving relativistic many-body approach: Equation of state, spectral function, and occupation probabilities of nuclear matter. Phys. Rev. C 44, 998 (1991). doi:10.1103/PhysRevC.44.998

    Article  Google Scholar 

  62. B.-J. Cai et al. in preparation (2016)

  63. J.W. Holt, N. Kaiser, G.A. Miller, Microscopic optical potential for exotic isotopes from chiral effective field theory. Phys. Rev. C 93, 064603 (2016). doi:10.1103/PhysRevC.93.064603

    Article  Google Scholar 

  64. W.Z. Jiang, B.A. Li, L.W. Chen, Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation. Phys. Rev. C 76, 044604 (2007). doi:10.1103/PhysRevC.76.044604

    Article  Google Scholar 

  65. V.R. Pandharipande, S.C. Pieper, Nuclear transparency to intermediate-energy nucleons from (e, e’p) reactions. Phys. Rev. C 45, 791 (1992). doi:10.1103/PhysRevC.45.791

    Article  Google Scholar 

  66. L.W. Chen, F.S. Zhang, Z.H. Lu et al., Isospin dependent Pauli blocking and nucleon mean free path in isospin-asymmetric nuclear matter. Phys. Rev. C 64, 064315 (2001). doi:10.1103/PhysRevC.64.064315

    Article  Google Scholar 

  67. F. Sammarruca, Microscopic approach to the nucleon-nucleon effective interaction and nucleon-nucleon scattering in symmetric and isospin-asymmetric nuclear matter. Euro. Phys. J. A50, 22 (2014). doi:10.1140/epja/i2014-14022-1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank F.J. Fattoyev, W.J. Guo, O. Hen, W.G. Newton, E. Piasetzky and C. Xu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-An Li.

Additional information

This work was supported in part by the US Department of Energy’s Office of Science under Award Number DE-SC0013702; the CUSTIPEN (China-US Theory Institute for Physics with Exotic Nuclei) under the US Department of Energy Grant No. DE-SC0009971; the National Natural Science Foundation of China Under Grant Nos. 11320101004, 11275125, 11205083 and 11135011; the Major State Basic Research Development Program (973 Program) in China under Contract Nos. 2013CB834405 and 2015CB856904; the “Shu Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Science and Technology Commission of Shanghai Municipality (11DZ2260700); the construct program of the key discipline in Hunan province, the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 15A159); the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3103); and the Innovation Group of Nuclear and Particle Physics in USC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BA., Cai, BJ., Chen, LW. et al. Isospin dependence of nucleon effective masses in neutron-rich matter. NUCL SCI TECH 27, 141 (2016). https://doi.org/10.1007/s41365-016-0140-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0140-4

Keywords

Navigation